297d50378d
define embedding, (split) surjection, retraction, existential quantifier, 'or' connective also add a whole bunch of theorems about these definitions still has two sorry's which can be solved after #564 is closed
337 lines
14 KiB
Text
337 lines
14 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: algebra.category.iso
|
||
Author: Floris van Doorn, Jakob von Raumer
|
||
-/
|
||
|
||
import .precategory types.sigma arity
|
||
|
||
open eq category prod equiv is_equiv sigma sigma.ops is_trunc
|
||
|
||
namespace iso
|
||
structure split_mono [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) :=
|
||
{retraction_of : b ⟶ a}
|
||
(retraction_comp : retraction_of ∘ f = id)
|
||
structure split_epi [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) :=
|
||
{section_of : b ⟶ a}
|
||
(comp_section : f ∘ section_of = id)
|
||
structure is_iso [class] {ob : Type} [C : precategory ob] {a b : ob} (f : a ⟶ b) :=
|
||
{inverse : b ⟶ a}
|
||
(left_inverse : inverse ∘ f = id)
|
||
(right_inverse : f ∘ inverse = id)
|
||
|
||
attribute is_iso.inverse [quasireducible]
|
||
|
||
attribute is_iso [multiple-instances]
|
||
open split_mono split_epi is_iso
|
||
definition retraction_of [reducible] := @split_mono.retraction_of
|
||
definition retraction_comp [reducible] := @split_mono.retraction_comp
|
||
definition section_of [reducible] := @split_epi.section_of
|
||
definition comp_section [reducible] := @split_epi.comp_section
|
||
definition inverse [reducible] := @is_iso.inverse
|
||
definition left_inverse [reducible] := @is_iso.left_inverse
|
||
definition right_inverse [reducible] := @is_iso.right_inverse
|
||
postfix `⁻¹` := inverse
|
||
--a second notation for the inverse, which is not overloaded
|
||
postfix [parsing-only] `⁻¹ʰ`:std.prec.max_plus := inverse -- input using \-1h
|
||
|
||
variables {ob : Type} [C : precategory ob]
|
||
variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a}
|
||
include C
|
||
|
||
definition split_mono_of_is_iso [instance] [priority 300] [reducible]
|
||
(f : a ⟶ b) [H : is_iso f] : split_mono f :=
|
||
split_mono.mk !left_inverse
|
||
|
||
definition split_epi_of_is_iso [instance] [priority 300] [reducible]
|
||
(f : a ⟶ b) [H : is_iso f] : split_epi f :=
|
||
split_epi.mk !right_inverse
|
||
|
||
definition is_iso_id [instance] [priority 500] (a : ob) : is_iso (ID a) :=
|
||
is_iso.mk !id_comp !id_comp
|
||
|
||
definition is_iso_inverse [instance] [priority 200] (f : a ⟶ b) [H : is_iso f] : is_iso f⁻¹ :=
|
||
is_iso.mk !right_inverse !left_inverse
|
||
|
||
definition left_inverse_eq_right_inverse {f : a ⟶ b} {g g' : hom b a}
|
||
(Hl : g ∘ f = id) (Hr : f ∘ g' = id) : g = g' :=
|
||
by rewrite [-(id_right g), -Hr, assoc, Hl, id_left]
|
||
|
||
definition retraction_eq [H : split_mono f] (H2 : f ∘ h = id) : retraction_of f = h :=
|
||
left_inverse_eq_right_inverse !retraction_comp H2
|
||
|
||
definition section_eq [H : split_epi f] (H2 : h ∘ f = id) : section_of f = h :=
|
||
(left_inverse_eq_right_inverse H2 !comp_section)⁻¹
|
||
|
||
definition inverse_eq_right [H : is_iso f] (H2 : f ∘ h = id) : f⁻¹ = h :=
|
||
left_inverse_eq_right_inverse !left_inverse H2
|
||
|
||
definition inverse_eq_left [H : is_iso f] (H2 : h ∘ f = id) : f⁻¹ = h :=
|
||
(left_inverse_eq_right_inverse H2 !right_inverse)⁻¹
|
||
|
||
definition retraction_eq_section (f : a ⟶ b) [Hl : split_mono f] [Hr : split_epi f] :
|
||
retraction_of f = section_of f :=
|
||
retraction_eq !comp_section
|
||
|
||
definition is_iso_of_split_epi_of_split_mono (f : a ⟶ b) [Hl : split_mono f] [Hr : split_epi f]
|
||
: is_iso f :=
|
||
is_iso.mk ((retraction_eq_section f) ▹ (retraction_comp f)) (comp_section f)
|
||
|
||
definition inverse_unique (H H' : is_iso f) : @inverse _ _ _ _ f H = @inverse _ _ _ _ f H' :=
|
||
inverse_eq_left !left_inverse
|
||
|
||
definition inverse_involutive (f : a ⟶ b) [H : is_iso f] [H : is_iso (f⁻¹)]
|
||
: (f⁻¹)⁻¹ = f :=
|
||
inverse_eq_right !left_inverse
|
||
|
||
definition retraction_id (a : ob) : retraction_of (ID a) = id :=
|
||
retraction_eq !id_comp
|
||
|
||
definition section_id (a : ob) : section_of (ID a) = id :=
|
||
section_eq !id_comp
|
||
|
||
definition id_inverse (a : ob) [H : is_iso (ID a)] : (ID a)⁻¹ = id :=
|
||
inverse_eq_left !id_comp
|
||
|
||
definition split_mono_comp [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b)
|
||
[Hf : split_mono f] [Hg : split_mono g] : split_mono (g ∘ f) :=
|
||
split_mono.mk
|
||
(show (retraction_of f ∘ retraction_of g) ∘ g ∘ f = id,
|
||
by rewrite [-assoc, assoc _ g f, retraction_comp, id_left, retraction_comp])
|
||
|
||
definition split_epi_comp [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b)
|
||
[Hf : split_epi f] [Hg : split_epi g] : split_epi (g ∘ f) :=
|
||
split_epi.mk
|
||
(show (g ∘ f) ∘ section_of f ∘ section_of g = id,
|
||
by rewrite [-assoc, {f ∘ _}assoc, comp_section, id_left, comp_section])
|
||
|
||
definition is_iso_comp [instance] [priority 150] (g : b ⟶ c) (f : a ⟶ b)
|
||
[Hf : is_iso f] [Hg : is_iso g] : is_iso (g ∘ f) :=
|
||
!is_iso_of_split_epi_of_split_mono
|
||
|
||
definition is_hprop_is_iso [instance] (f : hom a b) : is_hprop (is_iso f) :=
|
||
begin
|
||
apply is_hprop.mk, intros [H, H'],
|
||
cases H with [g, li, ri], cases H' with [g', li', ri'],
|
||
fapply (apd0111 (@is_iso.mk ob C a b f)),
|
||
apply left_inverse_eq_right_inverse,
|
||
apply li,
|
||
apply ri',
|
||
apply is_hprop.elim,
|
||
apply is_hprop.elim,
|
||
end
|
||
end iso open iso
|
||
|
||
/- isomorphic objects -/
|
||
structure iso {ob : Type} [C : precategory ob] (a b : ob) :=
|
||
(to_hom : hom a b)
|
||
[struct : is_iso to_hom]
|
||
|
||
namespace iso
|
||
variables {ob : Type} [C : precategory ob]
|
||
variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a}
|
||
include C
|
||
|
||
infix `≅`:50 := iso
|
||
attribute iso.struct [instance] [priority 400]
|
||
|
||
attribute to_hom [coercion]
|
||
|
||
protected definition MK (f : a ⟶ b) (g : b ⟶ a) (H1 : g ∘ f = id) (H2 : f ∘ g = id) :=
|
||
@mk _ _ _ _ f (is_iso.mk H1 H2)
|
||
|
||
definition to_inv (f : a ≅ b) : b ⟶ a :=
|
||
(to_hom f)⁻¹
|
||
|
||
protected definition refl (a : ob) : a ≅ a :=
|
||
mk (ID a)
|
||
|
||
protected definition symm ⦃a b : ob⦄ (H : a ≅ b) : b ≅ a :=
|
||
mk (to_hom H)⁻¹
|
||
|
||
protected definition trans ⦃a b c : ob⦄ (H1 : a ≅ b) (H2 : b ≅ c) : a ≅ c :=
|
||
mk (to_hom H2 ∘ to_hom H1)
|
||
|
||
definition iso_mk_eq {f f' : a ⟶ b} [H : is_iso f] [H' : is_iso f'] (p : f = f')
|
||
: iso.mk f = iso.mk f' :=
|
||
apd011 iso.mk p !is_hprop.elim
|
||
|
||
definition iso_eq {f f' : a ≅ b} (p : to_hom f = to_hom f') : f = f' :=
|
||
by (cases f; cases f'; apply (iso_mk_eq p))
|
||
|
||
-- The structure for isomorphism can be characterized up to equivalence by a sigma type.
|
||
protected definition sigma_char ⦃a b : ob⦄ : (Σ (f : hom a b), is_iso f) ≃ (a ≅ b) :=
|
||
begin
|
||
fapply (equiv.mk),
|
||
{intro S, apply iso.mk, apply (S.2)},
|
||
{fapply adjointify,
|
||
{intro p, cases p with [f, H], exact (sigma.mk f H)},
|
||
{intro p, cases p, apply idp},
|
||
{intro S, cases S, apply idp}},
|
||
end
|
||
|
||
-- The type of isomorphisms between two objects is a set
|
||
definition is_hset_iso [instance] : is_hset (a ≅ b) :=
|
||
begin
|
||
apply is_trunc_is_equiv_closed,
|
||
apply (equiv.to_is_equiv (!iso.sigma_char)),
|
||
end
|
||
|
||
definition iso_of_eq (p : a = b) : a ≅ b :=
|
||
eq.rec_on p (iso.refl a)
|
||
|
||
definition hom_of_eq [reducible] (p : a = b) : a ⟶ b :=
|
||
iso.to_hom (iso_of_eq p)
|
||
|
||
definition inv_of_eq [reducible] (p : a = b) : b ⟶ a :=
|
||
iso.to_inv (iso_of_eq p)
|
||
|
||
definition iso_of_eq_inv (p : a = b) : iso_of_eq p⁻¹ = iso.symm (iso_of_eq p) :=
|
||
eq.rec_on p idp
|
||
|
||
definition iso_of_eq_con (p : a = b) (q : b = c)
|
||
: iso_of_eq (p ⬝ q) = iso.trans (iso_of_eq p) (iso_of_eq q) :=
|
||
eq.rec_on q (eq.rec_on p (iso_eq !id_comp⁻¹))
|
||
|
||
section
|
||
open funext
|
||
variables {X : Type} {x y : X} {F G : X → ob}
|
||
definition transport_hom_of_eq (p : F = G) (f : hom (F x) (F y))
|
||
: p ▹ f = hom_of_eq (apd10 p y) ∘ f ∘ inv_of_eq (apd10 p x) :=
|
||
eq.rec_on p !id_leftright⁻¹
|
||
|
||
definition transport_hom (p : F ∼ G) (f : hom (F x) (F y))
|
||
: eq_of_homotopy p ▹ f = hom_of_eq (p y) ∘ f ∘ inv_of_eq (p x) :=
|
||
calc
|
||
eq_of_homotopy p ▹ f =
|
||
hom_of_eq (apd10 (eq_of_homotopy p) y) ∘ f ∘ inv_of_eq (apd10 (eq_of_homotopy p) x)
|
||
: transport_hom_of_eq
|
||
... = hom_of_eq (p y) ∘ f ∘ inv_of_eq (p x) : {right_inv apd10 p}
|
||
end
|
||
|
||
structure mono [class] (f : a ⟶ b) :=
|
||
(elim : ∀c (g h : hom c a), f ∘ g = f ∘ h → g = h)
|
||
structure epi [class] (f : a ⟶ b) :=
|
||
(elim : ∀c (g h : hom b c), g ∘ f = h ∘ f → g = h)
|
||
|
||
definition mono_of_split_mono [instance] (f : a ⟶ b) [H : split_mono f] : mono f :=
|
||
mono.mk
|
||
(λ c g h H,
|
||
calc
|
||
g = id ∘ g : by rewrite id_left
|
||
... = (retraction_of f ∘ f) ∘ g : by rewrite retraction_comp
|
||
... = (retraction_of f ∘ f) ∘ h : by rewrite [-assoc, H, -assoc]
|
||
... = id ∘ h : by rewrite retraction_comp
|
||
... = h : by rewrite id_left)
|
||
|
||
definition epi_of_split_epi [instance] (f : a ⟶ b) [H : split_epi f] : epi f :=
|
||
epi.mk
|
||
(λ c g h H,
|
||
calc
|
||
g = g ∘ id : by rewrite id_right
|
||
... = g ∘ f ∘ section_of f : by rewrite -comp_section
|
||
... = h ∘ f ∘ section_of f : by rewrite [assoc, H, -assoc]
|
||
... = h ∘ id : by rewrite comp_section
|
||
... = h : by rewrite id_right)
|
||
|
||
definition mono_comp [instance] (g : b ⟶ c) (f : a ⟶ b) [Hf : mono f] [Hg : mono g]
|
||
: mono (g ∘ f) :=
|
||
mono.mk
|
||
(λ d h₁ h₂ H,
|
||
have H2 : g ∘ (f ∘ h₁) = g ∘ (f ∘ h₂),
|
||
begin
|
||
rewrite *assoc, exact H
|
||
end,
|
||
!mono.elim (!mono.elim H2))
|
||
|
||
definition epi_comp [instance] (g : b ⟶ c) (f : a ⟶ b) [Hf : epi f] [Hg : epi g]
|
||
: epi (g ∘ f) :=
|
||
epi.mk
|
||
(λ d h₁ h₂ H,
|
||
have H2 : (h₁ ∘ g) ∘ f = (h₂ ∘ g) ∘ f,
|
||
begin
|
||
rewrite -*assoc, exact H
|
||
end,
|
||
!epi.elim (!epi.elim H2))
|
||
|
||
end iso
|
||
|
||
namespace iso
|
||
/-
|
||
rewrite lemmas for inverses, modified from
|
||
https://github.com/JasonGross/HoTT-categories/blob/master/theories/Categories/Category/Morphisms.v
|
||
-/
|
||
section
|
||
variables {ob : Type} [C : precategory ob] include C
|
||
variables {a b c d : ob} (f : b ⟶ a)
|
||
(r : c ⟶ d) (q : b ⟶ c) (p : a ⟶ b)
|
||
(g : d ⟶ c)
|
||
variable [Hq : is_iso q] include Hq
|
||
definition comp.right_inverse : q ∘ q⁻¹ = id := !right_inverse
|
||
definition comp.left_inverse : q⁻¹ ∘ q = id := !left_inverse
|
||
definition inverse_comp_cancel_left : q⁻¹ ∘ (q ∘ p) = p :=
|
||
by rewrite [assoc, left_inverse, id_left]
|
||
definition comp_inverse_cancel_left : q ∘ (q⁻¹ ∘ g) = g :=
|
||
by rewrite [assoc, right_inverse, id_left]
|
||
definition comp_inverse_cancel_right : (r ∘ q) ∘ q⁻¹ = r :=
|
||
by rewrite [-assoc, right_inverse, id_right]
|
||
definition inverse_comp_cancel_right : (f ∘ q⁻¹) ∘ q = f :=
|
||
by rewrite [-assoc, left_inverse, id_right]
|
||
|
||
definition comp_inverse [Hp : is_iso p] [Hpq : is_iso (q ∘ p)] : (q ∘ p)⁻¹ʰ = p⁻¹ʰ ∘ q⁻¹ʰ :=
|
||
inverse_eq_left
|
||
(show (p⁻¹ʰ ∘ q⁻¹ʰ) ∘ q ∘ p = id, from
|
||
by rewrite [-assoc, inverse_comp_cancel_left, left_inverse])
|
||
|
||
definition inverse_comp_inverse_left [H' : is_iso g] : (q⁻¹ ∘ g)⁻¹ = g⁻¹ ∘ q :=
|
||
inverse_involutive q ▹ comp_inverse q⁻¹ g
|
||
|
||
definition inverse_comp_inverse_right [H' : is_iso f] : (q ∘ f⁻¹)⁻¹ = f ∘ q⁻¹ :=
|
||
inverse_involutive f ▹ comp_inverse q f⁻¹
|
||
|
||
definition inverse_comp_inverse_inverse [H' : is_iso r] : (q⁻¹ ∘ r⁻¹)⁻¹ = r ∘ q :=
|
||
inverse_involutive r ▹ inverse_comp_inverse_left q r⁻¹
|
||
end
|
||
|
||
section
|
||
variables {ob : Type} {C : precategory ob} include C
|
||
variables {d c b a : ob}
|
||
{i : b ⟶ c} {f : b ⟶ a}
|
||
{r : c ⟶ d} {q : b ⟶ c} {p : a ⟶ b}
|
||
{g : d ⟶ c} {h : c ⟶ b}
|
||
{x : b ⟶ d} {z : a ⟶ c}
|
||
{y : d ⟶ b} {w : c ⟶ a}
|
||
variable [Hq : is_iso q] include Hq
|
||
|
||
definition comp_eq_of_eq_inverse_comp (H : y = q⁻¹ ∘ g) : q ∘ y = g :=
|
||
H⁻¹ ▹ comp_inverse_cancel_left q g
|
||
definition comp_eq_of_eq_comp_inverse (H : w = f ∘ q⁻¹) : w ∘ q = f :=
|
||
H⁻¹ ▹ inverse_comp_cancel_right f q
|
||
definition inverse_comp_eq_of_eq_comp (H : z = q ∘ p) : q⁻¹ ∘ z = p :=
|
||
H⁻¹ ▹ inverse_comp_cancel_left q p
|
||
definition comp_inverse_eq_of_eq_comp (H : x = r ∘ q) : x ∘ q⁻¹ = r :=
|
||
H⁻¹ ▹ comp_inverse_cancel_right r q
|
||
definition eq_comp_of_inverse_comp_eq (H : q⁻¹ ∘ g = y) : g = q ∘ y :=
|
||
(comp_eq_of_eq_inverse_comp H⁻¹)⁻¹
|
||
definition eq_comp_of_comp_inverse_eq (H : f ∘ q⁻¹ = w) : f = w ∘ q :=
|
||
(comp_eq_of_eq_comp_inverse H⁻¹)⁻¹
|
||
definition eq_inverse_comp_of_comp_eq (H : q ∘ p = z) : p = q⁻¹ ∘ z :=
|
||
(inverse_comp_eq_of_eq_comp H⁻¹)⁻¹
|
||
definition eq_comp_inverse_of_comp_eq (H : r ∘ q = x) : r = x ∘ q⁻¹ :=
|
||
(comp_inverse_eq_of_eq_comp H⁻¹)⁻¹
|
||
definition eq_inverse_of_comp_eq_id' (H : h ∘ q = id) : h = q⁻¹ := (inverse_eq_left H)⁻¹
|
||
definition eq_inverse_of_comp_eq_id (H : q ∘ h = id) : h = q⁻¹ := (inverse_eq_right H)⁻¹
|
||
definition eq_of_comp_inverse_eq_id (H : i ∘ q⁻¹ = id) : i = q :=
|
||
eq_inverse_of_comp_eq_id' H ⬝ inverse_involutive q
|
||
definition eq_of_inverse_comp_eq_id (H : q⁻¹ ∘ i = id) : i = q :=
|
||
eq_inverse_of_comp_eq_id H ⬝ inverse_involutive q
|
||
definition eq_of_id_eq_comp_inverse (H : id = i ∘ q⁻¹) : q = i := (eq_of_comp_inverse_eq_id H⁻¹)⁻¹
|
||
definition eq_of_id_eq_inverse_comp (H : id = q⁻¹ ∘ i) : q = i := (eq_of_inverse_comp_eq_id H⁻¹)⁻¹
|
||
definition inverse_eq_of_id_eq_comp (H : id = h ∘ q) : q⁻¹ = h :=
|
||
(eq_inverse_of_comp_eq_id' H⁻¹)⁻¹
|
||
definition inverse_eq_of_id_eq_comp' (H : id = q ∘ h) : q⁻¹ = h :=
|
||
(eq_inverse_of_comp_eq_id H⁻¹)⁻¹
|
||
end
|
||
end iso
|