109 lines
4.8 KiB
Text
109 lines
4.8 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Author: Leonardo de Moura, Jeremy Avigad
|
||
import logic.eq
|
||
open inhabited decidable eq.ops
|
||
|
||
namespace prod
|
||
variables {A B : Type} {a₁ a₂ : A} {b₁ b₂ : B} {u : A × B}
|
||
|
||
theorem pair_eq : a₁ = a₂ → b₁ = b₂ → (a₁, b₁) = (a₂, b₂) :=
|
||
assume H1 H2, H1 ▸ H2 ▸ rfl
|
||
|
||
protected theorem equal {p₁ p₂ : prod A B} : pr₁ p₁ = pr₁ p₂ → pr₂ p₁ = pr₂ p₂ → p₁ = p₂ :=
|
||
destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, pair_eq H₁ H₂))
|
||
|
||
protected definition is_inhabited [instance] : inhabited A → inhabited B → inhabited (prod A B) :=
|
||
take (H₁ : inhabited A) (H₂ : inhabited B),
|
||
inhabited.destruct H₁ (λa, inhabited.destruct H₂ (λb, inhabited.mk (pair a b)))
|
||
|
||
protected definition has_decidable_eq [instance] : decidable_eq A → decidable_eq B → decidable_eq (A × B) :=
|
||
take (H₁ : decidable_eq A) (H₂ : decidable_eq B) (u v : A × B),
|
||
have H₃ : u = v ↔ (pr₁ u = pr₁ v) ∧ (pr₂ u = pr₂ v), from
|
||
iff.intro
|
||
(assume H, H ▸ and.intro rfl rfl)
|
||
(assume H, and.elim H (assume H₄ H₅, equal H₄ H₅)),
|
||
decidable_iff_equiv _ (iff.symm H₃)
|
||
|
||
-- ### flip operation
|
||
|
||
definition flip (a : A × B) : B × A := pair (pr2 a) (pr1 a)
|
||
|
||
theorem flip_def (a : A × B) : flip a = pair (pr2 a) (pr1 a) := rfl
|
||
theorem flip_pair (a : A) (b : B) : flip (pair a b) = pair b a := rfl
|
||
theorem flip_pr1 (a : A × B) : pr1 (flip a) = pr2 a := rfl
|
||
theorem flip_pr2 (a : A × B) : pr2 (flip a) = pr1 a := rfl
|
||
theorem flip_flip (a : A × B) : flip (flip a) = a :=
|
||
destruct a (take x y, rfl)
|
||
|
||
theorem P_flip {P : A → B → Prop} (a : A × B) (H : P (pr1 a) (pr2 a))
|
||
: P (pr2 (flip a)) (pr1 (flip a)) :=
|
||
(flip_pr1 a)⁻¹ ▸ (flip_pr2 a)⁻¹ ▸ H
|
||
|
||
theorem flip_inj {a b : A × B} (H : flip a = flip b) : a = b :=
|
||
have H2 : flip (flip a) = flip (flip b), from congr_arg flip H,
|
||
show a = b, from (flip_flip a) ▸ (flip_flip b) ▸ H2
|
||
|
||
-- ### coordinatewise unary maps
|
||
|
||
definition map_pair (f : A → B) (a : A × A) : B × B :=
|
||
pair (f (pr1 a)) (f (pr2 a))
|
||
|
||
theorem map_pair_def (f : A → B) (a : A × A)
|
||
: map_pair f a = pair (f (pr1 a)) (f (pr2 a)) :=
|
||
rfl
|
||
|
||
theorem map_pair_pair (f : A → B) (a a' : A)
|
||
: map_pair f (pair a a') = pair (f a) (f a') :=
|
||
(pr1.mk a a') ▸ (pr2.mk a a') ▸ rfl
|
||
|
||
theorem map_pair_pr1 (f : A → B) (a : A × A) : pr1 (map_pair f a) = f (pr1 a) :=
|
||
!pr1.mk
|
||
|
||
theorem map_pair_pr2 (f : A → B) (a : A × A) : pr2 (map_pair f a) = f (pr2 a) :=
|
||
!pr2.mk
|
||
|
||
-- ### coordinatewise binary maps
|
||
|
||
definition map_pair2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : C × C :=
|
||
pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b))
|
||
|
||
theorem map_pair2_def {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||
map_pair2 f a b = pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) := rfl
|
||
|
||
theorem map_pair2_pair {A B C : Type} (f : A → B → C) (a a' : A) (b b' : B) :
|
||
map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') :=
|
||
calc
|
||
map_pair2 f (pair a a') (pair b b')
|
||
= pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) (pr2 (pair b b')))
|
||
: {pr1.mk b b'}
|
||
... = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) b') : {pr2.mk b b'}
|
||
... = pair (f (pr1 (pair a a')) b) (f a' b') : {pr2.mk a a'}
|
||
... = pair (f a b) (f a' b') : {pr1.mk a a'}
|
||
|
||
theorem map_pair2_pr1 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||
pr1 (map_pair2 f a b) = f (pr1 a) (pr1 b) := !pr1.mk
|
||
|
||
theorem map_pair2_pr2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||
pr2 (map_pair2 f a b) = f (pr2 a) (pr2 b) := !pr2.mk
|
||
|
||
theorem map_pair2_flip {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||
flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b) :=
|
||
have Hx : pr1 (flip (map_pair2 f a b)) = pr1 (map_pair2 f (flip a) (flip b)), from
|
||
calc
|
||
pr1 (flip (map_pair2 f a b)) = pr2 (map_pair2 f a b) : flip_pr1 _
|
||
... = f (pr2 a) (pr2 b) : map_pair2_pr2 f a b
|
||
... = f (pr1 (flip a)) (pr2 b) : {(flip_pr1 a)⁻¹}
|
||
... = f (pr1 (flip a)) (pr1 (flip b)) : {(flip_pr1 b)⁻¹}
|
||
... = pr1 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr1 f _ _)⁻¹,
|
||
have Hy : pr2 (flip (map_pair2 f a b)) = pr2 (map_pair2 f (flip a) (flip b)), from
|
||
calc
|
||
pr2 (flip (map_pair2 f a b)) = pr1 (map_pair2 f a b) : flip_pr2 _
|
||
... = f (pr1 a) (pr1 b) : map_pair2_pr1 f a b
|
||
... = f (pr2 (flip a)) (pr1 b) : {flip_pr2 a}
|
||
... = f (pr2 (flip a)) (pr2 (flip b)) : {flip_pr2 b}
|
||
... = pr2 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr2 f _ _)⁻¹,
|
||
pair_eq Hx Hy
|
||
|
||
|
||
end prod
|