lean2/library/theories/analysis/inner_product.lean
2016-02-29 11:53:26 -08:00

223 lines
9.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Real inner product spaces.
Note: We can enter ⟨v, w⟩ as \<v, w\>. This file overwrites the notation for dependent pairs.
-/
import theories.analysis.normed_space theories.analysis.sqrt
open nat real classical
noncomputable theory
structure inner_product_space [class] (V : Type) extends real_vector_space V :=
(inner : V → V → )
(inner_add_left : ∀ u v w, inner (add u v) w = inner u w + inner v w)
(inner_smul_left : ∀ r v w, inner (smul r v) w = r * inner v w)
(inner_comm : ∀ v w, inner v w = inner w v)
(inner_self_nonneg : ∀ v, inner v v ≥ 0)
(eq_zero_of_inner_self_eq_zero : ∀ {v}, inner v v = 0 → v = zero)
namespace analysis
variables {V : Type} [inner_product_space V]
definition inner (v w : V) : := inner_product_space.inner v w
notation `⟨` v `, ` w `⟩` := inner v w
proposition inner_comm (v w : V) : ⟨v, w⟩ = ⟨w, v⟩ := inner_product_space.inner_comm v w
proposition inner_add_left (u v w : V) : ⟨u + v, w⟩ = ⟨u, w⟩ + ⟨v, w⟩ :=
inner_product_space.inner_add_left u v w
proposition inner_add_right (u v w : V) : ⟨u, v + w⟩ = ⟨u, v⟩ + ⟨u, w⟩ :=
by rewrite [inner_comm, inner_add_left, inner_comm, inner_comm w]
proposition inner_smul_left (r : ) (v w : V) : ⟨r • v, w⟩ = r * ⟨v, w⟩ :=
inner_product_space.inner_smul_left r v w
proposition inner_smul_right (r : ) (v w : V) : ⟨v, r • w⟩ = r * ⟨v, w⟩ :=
by rewrite [inner_comm, inner_smul_left, inner_comm]
proposition inner_self_nonneg (v : V) : ⟨v, v⟩ ≥ 0 := inner_product_space.inner_self_nonneg v
proposition eq_zero_of_inner_self_eq_zero {v : V} (H : ⟨v, v⟩ = 0) : v = 0 :=
inner_product_space.eq_zero_of_inner_self_eq_zero H
proposition inner_neg_left (u v : V) : ⟨-u, v⟩ = -⟨u, v⟩ :=
by rewrite [-neg_one_smul_real, inner_smul_left, -neg_eq_neg_one_mul]
proposition inner_neg_right (u v : V) : ⟨u, -v⟩ = -⟨u, v⟩ :=
by rewrite [inner_comm, inner_neg_left, inner_comm]
proposition inner_sub_left (u v w : V) : ⟨u - v, w⟩ = ⟨u, w⟩ - ⟨v, w⟩ :=
by rewrite [*sub_eq_add_neg, inner_add_left, inner_neg_left]
proposition inner_sub_right (u v w : V) : ⟨u, v - w⟩ = ⟨u, v⟩ - ⟨u, w⟩ :=
by rewrite [*sub_eq_add_neg, inner_add_right, inner_neg_right]
proposition inner_zero_left (v : V) : ⟨0, v⟩ = 0 :=
have (0 : ) • v = 0, from zero_smul v,
using this, by rewrite [-this, inner_smul_left, zero_mul]
proposition inner_zero_right (v : V) : ⟨v, 0⟩ = 0 :=
by rewrite [inner_comm, inner_zero_left]
definition orthogonal (u v : V) : Prop := ⟨u, v⟩ = 0
infix ` ⊥ `:50 := orthogonal
proposition orthogonal_comm {u v : V} (H : u ⊥ v) : v ⊥ u :=
by unfold orthogonal at *; rewrite [inner_comm, H]
/- first, we define norm internally, to show that an inner product space is a normed space -/
private definition ip_norm (v : V) : := sqrt ⟨v, v⟩
private proposition ip_norm_zero : ip_norm (0 : V) = 0 :=
by rewrite [↑ip_norm, inner_zero_left, sqrt_zero]
private proposition ip_norm_squared (v : V) : (ip_norm v)^2 = ⟨v, v⟩ :=
sqrt_squared (inner_self_nonneg v)
private proposition ip_norm_nonneg (v : V) : ip_norm v ≥ 0 := !sqrt_nonneg
private proposition eq_zero_of_ip_norm_eq_zero {v : V} (H : ip_norm v = 0) : v = 0 :=
have ⟨v, v⟩ = 0, by rewrite [-ip_norm_squared, H, pow_two, zero_mul],
eq_zero_of_inner_self_eq_zero this
private proposition ip_norm_smul (r : ) (v : V) : ip_norm (r • v) = abs r * ip_norm v :=
begin
rewrite [↑ip_norm, inner_smul_left, inner_smul_right, -mul.assoc],
rewrite [sqrt_mul (mul_self_nonneg r) (inner_self_nonneg v), -pow_two, sqrt_squared']
end
private proposition ip_norm_pythagorean {u v : V} (ortho : u ⊥ v) :
(ip_norm (u + v))^2 = (ip_norm u)^2 + (ip_norm v)^2 :=
by rewrite [↑orthogonal at ortho, *ip_norm_squared, inner_add_right, *inner_add_left,
inner_comm v u, *ortho, zero_add, add_zero]
private definition ip_proj_on (u : V) {v : V} (H : v ≠ 0) : V :=
(⟨u, v⟩ / (ip_norm v)^2) • v
private proposition ip_proj_on_orthogonal (u : V) {v : V} (H : v ≠ 0) :
ip_proj_on u H ⊥ (u - ip_proj_on u H) :=
begin
rewrite [↑ip_proj_on, ↑orthogonal, inner_sub_right, +inner_smul_left, inner_smul_right],
rewrite [ip_norm_squared at {3}],
rewrite [div_mul_cancel _ (assume H', H (eq_zero_of_inner_self_eq_zero H'))],
rewrite [inner_comm v u, sub_self]
end
private proposition ip_norm_proj_on_eq (u : V) {v : V} (H : v ≠ 0) :
ip_norm (ip_proj_on u H) = abs ⟨u, v⟩ / ip_norm v :=
have H1 : ip_norm v ≠ 0, from assume H', H (eq_zero_of_ip_norm_eq_zero H'),
begin+
rewrite [↑ip_proj_on, ip_norm_smul, abs_div, abs_of_nonneg (squared_nonneg (ip_norm v)), pow_two],
rewrite [div_mul_eq_mul_div, -div_mul_div, div_self H1, mul_one]
end
private proposition ip_norm_squared_pythagorean (u : V) {v : V} (H : v ≠ 0) :
(ip_norm u)^2 = (ip_norm (u - ip_proj_on u H))^2 + (ip_norm (ip_proj_on u H))^2 :=
calc
(ip_norm u)^2 = (ip_norm (u - ip_proj_on u H + ip_proj_on u H))^2 :
sub_add_cancel
... = (ip_norm (u - ip_proj_on u H))^2 + (ip_norm (ip_proj_on u H))^2 :
ip_norm_pythagorean (orthogonal_comm (ip_proj_on_orthogonal u H))
private proposition ip_norm_proj_on_le (u : V) {v : V} (H : v ≠ 0) :
ip_norm (ip_proj_on u H) ≤ ip_norm u :=
have (ip_norm u)^2 ≥ (ip_norm (ip_proj_on u H))^2,
begin
rewrite [ip_norm_squared_pythagorean u H],
apply le_add_of_nonneg_left (squared_nonneg (ip_norm (u - ip_proj_on u H)))
end,
le_of_squared_le_squared !ip_norm_nonneg this
private proposition ip_cauchy_schwartz (u v : V) : abs ⟨u, v⟩ ≤ ip_norm u * ip_norm v :=
by_cases
(suppose v = (0 : V),
begin
rewrite [this, inner_zero_right, abs_zero, ip_norm_zero, mul_zero],
exact le.refl (0 : )
end)
(assume vnz : v ≠ 0,
have ip_norm v ≠ 0, from assume H, vnz (eq_zero_of_ip_norm_eq_zero H),
have ip_norm v > 0, from lt_of_le_of_ne !sqrt_nonneg (ne.symm this),
using this, begin
note H := ip_norm_proj_on_le u vnz,
rewrite [ip_norm_proj_on_eq u vnz at H],
exact le_mul_of_div_le this H
end)
private proposition ip_cauchy_schwartz' (u v : V) : ⟨u, v⟩ ≤ ip_norm u * ip_norm v :=
le.trans !le_abs_self !ip_cauchy_schwartz
private proposition ip_norm_triangle (u v : V) : ip_norm (u + v) ≤ ip_norm u + ip_norm v :=
have H : ⟨u, v⟩ ≤ ip_norm u * ip_norm v, from ip_cauchy_schwartz' u v,
have (ip_norm (u + v))^2 ≤ (ip_norm u + ip_norm v)^2, from
calc
(ip_norm (u + v))^2 = (ip_norm u)^2 + (ip_norm v)^2 + ⟨u, v⟩ + ⟨u, v⟩ :
by rewrite [↑ip_norm, *sqrt_squared !inner_self_nonneg, inner_add_left,
*inner_add_right, *inner_comm v u, -add.assoc, -*add.right_comm _ _ ⟨v, v⟩]
... ≤ (ip_norm u)^2 + (ip_norm v)^2 + ip_norm u * ip_norm v + ⟨u, v⟩ :
add_le_add_right (add_le_add_left H _) _
... ≤ (ip_norm u)^2 + (ip_norm v)^2 + ip_norm u * ip_norm v + ip_norm u * ip_norm v :
add_le_add_left H _
... = (ip_norm u + ip_norm v)^2 :
by rewrite [*pow_two, right_distrib, *left_distrib, -add.assoc,
*add.right_comm _ (ip_norm v * ip_norm v),
mul.comm (ip_norm v) (ip_norm u)],
le_of_squared_le_squared (add_nonneg !ip_norm_nonneg !ip_norm_nonneg) this
definition inner_product_space.to_normed_space [trans_instance] :
normed_vector_space V :=
⦃ normed_vector_space, _inst_1,
norm := ip_norm,
norm_zero := ip_norm_zero,
eq_zero_of_norm_eq_zero := @eq_zero_of_ip_norm_eq_zero V _,
norm_triangle := ip_norm_triangle,
norm_smul := ip_norm_smul
/- now we restate the new theorems using the norm notation -/
proposition norm_squared (v : V) : ∥ v ∥^2 = ⟨v, v⟩ := ip_norm_squared v
proposition norm_pythagorean {u v : V} (ortho : u ⊥ v) : ∥ u + v ∥^2 = ∥ u ∥^2 + ∥ v ∥^2 :=
ip_norm_pythagorean ortho
definition proj_on (u : V) {v : V} (H : v ≠ 0) : V := (⟨u, v⟩ / ∥ v ∥^2) • v
proposition proj_on_orthogonal (u : V) {v : V} (H : v ≠ 0) :
proj_on u H ⊥ (u - proj_on u H) :=
ip_proj_on_orthogonal u H
proposition norm_proj_on_eq (u : V) {v : V} (H : v ≠ 0) :
∥ proj_on u H ∥ = abs ⟨u, v⟩ / ∥ v ∥ :=
ip_norm_proj_on_eq u H
proposition norm_squared_pythagorean (u : V) {v : V} (H : v ≠ 0) :
∥ u ∥^2 = ∥ u - proj_on u H ∥^2 + ∥ proj_on u H ∥^2 :=
ip_norm_squared_pythagorean u H
proposition norm_proj_on_le (u : V) {v : V} (H : v ≠ 0) :
∥ proj_on u H ∥ ≤ ∥ u ∥ := ip_norm_proj_on_le u H
theorem cauchy_schwartz (u v : V) : abs ⟨u, v⟩ ≤ ∥ u ∥ * ∥ v ∥ := ip_cauchy_schwartz u v
theorem cauchy_schwartz' (u v : V) : ⟨u, v⟩ ≤ ∥ u ∥ * ∥ v ∥ := ip_cauchy_schwartz' u v
theorem eq_proj_on_cauchy_schwartz {u v : V} (H : v ≠ 0) (H₁ : abs ⟨u, v⟩ = ∥ u ∥ * ∥ v ∥) :
u = proj_on u H :=
have ∥ v ∥ ≠ 0, from assume H', H (eq_zero_of_norm_eq_zero H'),
have ∥ u ∥ = ∥ proj_on u H ∥, by rewrite [norm_proj_on_eq, H₁, mul_div_cancel _ this],
have ∥ u - proj_on u H ∥^2 + ∥ u ∥^2 = 0 + ∥ u ∥^2,
by rewrite [zero_add, norm_squared_pythagorean u H at {2}, this],
have ∥ u - proj_on u H ∥^2 = 0, from eq_of_add_eq_add_right this,
show u = proj_on u H,
from eq_of_sub_eq_zero (eq_zero_of_norm_eq_zero (eq_zero_of_squared_eq_zero this))
end analysis