lean2/hott/algebra/category/constructions/functor2.hlean

148 lines
6.5 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Jakob von Raumer
Functor category has (co)limits if the codomain has them
-/
import ..colimits
open functor nat_trans eq is_trunc
namespace category
-- preservation of limits
variables {D C I : Precategory}
definition functor_limit_object [constructor]
[H : has_limits_of_shape D I] (F : I ⇒ D ^c C) : C ⇒ D :=
begin
assert lem : Π(c d : carrier C) (f : hom c d) ⦃i j : carrier I⦄ (k : i ⟶ j),
(constant2_functor F d) k ∘ to_fun_hom (F i) f ∘ limit_morphism (constant2_functor F c) i =
to_fun_hom (F j) f ∘ limit_morphism (constant2_functor F c) j,
{ intro c d f i j k, rewrite [-limit_commute _ k,▸*,+assoc,▸*,-naturality (F k) f]},
fapply functor.mk,
{ intro c, exact limit_object (constant2_functor F c)},
{ intro c d f, fapply hom_limit,
{ intro i, refine to_fun_hom (F i) f ∘ !limit_morphism},
{ apply lem}},
{ exact abstract begin intro c, symmetry, apply eq_hom_limit, intro i,
rewrite [id_right,respect_id,▸*,id_left] end end},
{ intro a b c g f, symmetry, apply eq_hom_limit, intro i, -- report: adding abstract fails here
rewrite [respect_comp,assoc,hom_limit_commute,-assoc,hom_limit_commute,assoc]}
end
definition functor_limit_cone [constructor]
[H : has_limits_of_shape D I] (F : I ⇒ D ^c C) : cone_obj F :=
begin
fapply cone_obj.mk,
{ exact functor_limit_object F},
{ fapply nat_trans.mk,
{ intro i, esimp, fapply nat_trans.mk,
{ intro c, esimp, apply limit_morphism},
{ intro c d f, rewrite [▸*,hom_limit_commute (constant2_functor F d)]}},
{ intro i j k, apply nat_trans_eq, intro c,
rewrite [▸*,id_right,limit_commute (constant2_functor F c)]}}
end
variables (D C I)
definition has_limits_of_shape_functor [instance] [H : has_limits_of_shape D I]
: has_limits_of_shape (D ^c C) I :=
begin
intro F, fapply has_terminal_object.mk,
{ exact functor_limit_cone F},
{ intro c, esimp at *, induction c with G η, induction η with η p, esimp at *,
fapply is_contr.mk,
{ fapply cone_hom.mk,
{ fapply nat_trans.mk,
{ intro c, esimp, fapply hom_limit,
{ intro i, esimp, exact η i c},
{ intro i j k, esimp, exact ap010 natural_map (p k) c ⬝ !id_right}},
{ intro c d f, esimp, fapply @limit_cone_unique,
{ intro i, esimp, exact to_fun_hom (F i) f ∘ η i c},
{ intro i j k, rewrite [▸*,assoc,-naturality,-assoc,-compose_def,p k,▸*,id_right]},
{ intro i, rewrite [assoc, hom_limit_commute (constant2_functor F d),▸*,-assoc,
hom_limit_commute]},
{ intro i, rewrite [assoc, hom_limit_commute (constant2_functor F d),naturality]}}},
{ intro i, apply nat_trans_eq, intro c,
rewrite [▸*,hom_limit_commute (constant2_functor F c)]}},
{ intro h, induction h with f q, apply cone_hom_eq,
apply nat_trans_eq, intro c, esimp at *, symmetry,
apply eq_hom_limit, intro i, exact ap010 natural_map (q i) c}}
end
definition is_complete_functor [instance] [H : is_complete D] : is_complete (D ^c C) :=
λI, _
variables {D C I}
-- preservation of colimits
-- definition constant2_functor_op [constructor] (F : I ⇒ (D ^c C)ᵒᵖ) (c : C) : I ⇒ D :=
-- proof
-- functor.mk (λi, to_fun_ob (F i) c)
-- (λi j f, natural_map (F f) c)
-- abstract (λi, ap010 natural_map !respect_id c ⬝ proof idp qed) end
-- abstract (λi j k g f, ap010 natural_map !respect_comp c) end
-- qed
definition functor_colimit_object [constructor]
[H : has_colimits_of_shape D I] (F : Iᵒᵖ ⇒ (D ^c C)ᵒᵖ) : C ⇒ D :=
begin
fapply functor.mk,
{ intro c, exact colimit_object (constant2_functor Fᵒᵖ' c)},
{ intro c d f, apply colimit_hom_colimit, apply constant2_functor_natural _ f},
{ exact abstract begin intro c, symmetry, apply eq_colimit_hom, intro i,
rewrite [id_left,▸*,respect_id,id_right] end end},
{ intro a b c g f, symmetry, apply eq_colimit_hom, intro i, -- report: adding abstract fails here
rewrite [▸*,respect_comp,-assoc,colimit_hom_commute,assoc,colimit_hom_commute,-assoc]}
end
definition functor_colimit_cone [constructor]
[H : has_colimits_of_shape D I] (F : Iᵒᵖ ⇒ (D ^c C)ᵒᵖ) : cone_obj F :=
begin
fapply cone_obj.mk,
{ exact functor_colimit_object F},
{ fapply nat_trans.mk,
{ intro i, esimp, fapply nat_trans.mk,
{ intro c, esimp, apply colimit_morphism},
{ intro c d f, apply colimit_hom_commute (constant2_functor Fᵒᵖ' c)}},
{ intro i j k, apply nat_trans_eq, intro c,
rewrite [▸*,id_left], apply colimit_commute (constant2_functor Fᵒᵖ' c)}}
end
variables (D C I)
definition has_colimits_of_shape_functor [instance] [H : has_colimits_of_shape D I]
: has_colimits_of_shape (D ^c C) I :=
begin
intro F, fapply has_terminal_object.mk,
{ exact functor_colimit_cone F},
{ intro c, esimp at *, induction c with G η, induction η with η p, esimp at *,
fapply is_contr.mk,
{ fapply cone_hom.mk,
{ fapply nat_trans.mk,
{ intro c, esimp, fapply colimit_hom,
{ intro i, esimp, exact η i c},
{ intro i j k, esimp, exact ap010 natural_map (p k) c ⬝ !id_left}},
{ intro c d f, esimp, fapply @colimit_cocone_unique,
{ intro i, esimp, exact η i d ∘ to_fun_hom (F i) f},
{ intro i j k, rewrite [▸*,-assoc,naturality,assoc,-compose_def,p k,▸*,id_left]},
{ intro i, rewrite [-assoc, colimit_hom_commute (constant2_functor Fᵒᵖ' c),
▸*, naturality]},
{ intro i, rewrite [-assoc, colimit_hom_commute (constant2_functor Fᵒᵖ' c),▸*,assoc,
colimit_hom_commute (constant2_functor Fᵒᵖ' d)]}}},
{ intro i, apply nat_trans_eq, intro c,
rewrite [▸*,colimit_hom_commute (constant2_functor Fᵒᵖ' c)]}},
{ intro h, induction h with f q, apply cone_hom_eq,
apply nat_trans_eq, intro c, esimp at *, symmetry,
apply eq_colimit_hom, intro i, exact ap010 natural_map (q i) c}}
end
local attribute has_limits_of_shape_op_op [instance] [priority 1]
universe variables u v
definition is_cocomplete_functor [instance] [H : is_cocomplete.{_ _ u v} D]
: is_cocomplete.{_ _ u v} (D ^c C) :=
λI, _
end category