lean2/library/data/finset/basic.lean
Leonardo de Moura cb12b9b876 refactor(library): cleanup proofs
Fixed proofs that broke when we tried to implement a "checkpoint" have.
2016-02-03 19:52:23 -08:00

734 lines
28 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura, Jeremy Avigad
Finite sets.
-/
import data.fintype.basic data.nat data.list.perm algebra.binary
open nat quot list subtype binary function eq.ops
open [decl] perm
definition nodup_list (A : Type) := {l : list A | nodup l}
variable {A : Type}
definition to_nodup_list_of_nodup {l : list A} (n : nodup l) : nodup_list A :=
tag l n
definition to_nodup_list [decidable_eq A] (l : list A) : nodup_list A :=
@to_nodup_list_of_nodup A (erase_dup l) (nodup_erase_dup l)
private definition eqv (l₁ l₂ : nodup_list A) :=
perm (elt_of l₁) (elt_of l₂)
local infix ~ := eqv
private definition eqv.refl (l : nodup_list A) : l ~ l :=
!perm.refl
private definition eqv.symm {l₁ l₂ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₁ :=
perm.symm
private definition eqv.trans {l₁ l₂ l₃ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ :=
perm.trans
definition finset.nodup_list_setoid [instance] (A : Type) : setoid (nodup_list A) :=
setoid.mk (@eqv A) (mk_equivalence (@eqv A) (@eqv.refl A) (@eqv.symm A) (@eqv.trans A))
definition finset (A : Type) : Type :=
quot (finset.nodup_list_setoid A)
namespace finset
-- give finset notation higher priority than set notation, so that it is tried first
protected definition prio : num := num.succ std.priority.default
definition to_finset_of_nodup (l : list A) (n : nodup l) : finset A :=
⟦to_nodup_list_of_nodup n⟧
definition to_finset [decidable_eq A] (l : list A) : finset A :=
⟦to_nodup_list l⟧
lemma to_finset_eq_of_nodup [decidable_eq A] {l : list A} (n : nodup l) :
to_finset_of_nodup l n = to_finset l :=
assert P : to_nodup_list_of_nodup n = to_nodup_list l, from
begin
rewrite [↑to_nodup_list, ↑to_nodup_list_of_nodup],
congruence,
rewrite [erase_dup_eq_of_nodup n]
end,
quot.sound (eq.subst P !setoid.refl)
definition has_decidable_eq [instance] [decidable_eq A] : decidable_eq (finset A) :=
λ s₁ s₂, quot.rec_on_subsingleton₂ s₁ s₂
(λ l₁ l₂,
match decidable_perm (elt_of l₁) (elt_of l₂) with
| decidable.inl e := decidable.inl (quot.sound e)
| decidable.inr n := decidable.inr (λ e : ⟦l₁⟧ = ⟦l₂⟧, absurd (quot.exact e) n)
end)
definition mem (a : A) (s : finset A) : Prop :=
quot.lift_on s (λ l, a ∈ elt_of l)
(λ l₁ l₂ (e : l₁ ~ l₂), propext (iff.intro
(λ ainl₁, mem_perm e ainl₁)
(λ ainl₂, mem_perm (perm.symm e) ainl₂)))
infix [priority finset.prio] ∈ := mem
notation [priority finset.prio] a ∉ b := ¬ mem a b
theorem mem_of_mem_list {a : A} {l : nodup_list A} : a ∈ elt_of l → a ∈ ⟦l⟧ :=
λ ainl, ainl
theorem mem_list_of_mem {a : A} {l : nodup_list A} : a ∈ ⟦l⟧ → a ∈ elt_of l :=
λ ainl, ainl
definition decidable_mem [instance] [h : decidable_eq A] : ∀ (a : A) (s : finset A), decidable (a ∈ s) :=
λ a s, quot.rec_on_subsingleton s
(λ l, match list.decidable_mem a (elt_of l) with
| decidable.inl p := decidable.inl (mem_of_mem_list p)
| decidable.inr n := decidable.inr (λ p, absurd (mem_list_of_mem p) n)
end)
theorem mem_to_finset [decidable_eq A] {a : A} {l : list A} : a ∈ l → a ∈ to_finset l :=
λ ainl, mem_erase_dup ainl
theorem mem_to_finset_of_nodup {a : A} {l : list A} (n : nodup l) : a ∈ l → a ∈ to_finset_of_nodup l n :=
λ ainl, ainl
/- extensionality -/
theorem ext {s₁ s₂ : finset A} : (∀ a, a ∈ s₁ ↔ a ∈ s₂) → s₁ = s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ e, quot.sound (perm_ext (has_property l₁) (has_property l₂) e))
/- empty -/
definition empty : finset A :=
to_finset_of_nodup [] nodup_nil
notation [priority finset.prio] `∅` := !empty
theorem not_mem_empty [simp] (a : A) : a ∉ ∅ :=
λ aine : a ∈ ∅, aine
theorem mem_empty_iff [simp] (x : A) : x ∈ ∅ ↔ false :=
iff_false_intro !not_mem_empty
theorem mem_empty_eq (x : A) : x ∈ ∅ = false :=
propext !mem_empty_iff
theorem eq_empty_of_forall_not_mem {s : finset A} (H : ∀x, ¬ x ∈ s) : s = ∅ :=
ext (take x, iff_false_intro (H x))
/- universe -/
definition univ [h : fintype A] : finset A :=
to_finset_of_nodup (@fintype.elems A h) (@fintype.unique A h)
theorem mem_univ [fintype A] (x : A) : x ∈ univ :=
fintype.complete x
theorem mem_univ_eq [fintype A] (x : A) : x ∈ univ = true := propext (iff_true_intro !mem_univ)
/- card -/
definition card (s : finset A) : nat :=
quot.lift_on s
(λ l, length (elt_of l))
(λ l₁ l₂ p, length_eq_length_of_perm p)
theorem card_empty : card (@empty A) = 0 :=
rfl
lemma ne_empty_of_card_eq_succ {s : finset A} {n : nat} : card s = succ n → s ≠ ∅ :=
by intros; substvars; contradiction
/- insert -/
section insert
variable [h : decidable_eq A]
include h
definition insert (a : A) (s : finset A) : finset A :=
quot.lift_on s
(λ l, to_finset_of_nodup (insert a (elt_of l)) (nodup_insert a (has_property l)))
(λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (perm_insert a p))
-- set builder notation
notation [priority finset.prio] `'{`:max a:(foldr `, ` (x b, insert x b) ∅) `}`:0 := a
theorem mem_insert (a : A) (s : finset A) : a ∈ insert a s :=
quot.induction_on s
(λ l : nodup_list A, mem_to_finset_of_nodup _ !list.mem_insert)
theorem mem_insert_of_mem {a : A} {s : finset A} (b : A) : a ∈ s → a ∈ insert b s :=
quot.induction_on s
(λ (l : nodup_list A) (ainl : a ∈ ⟦l⟧), mem_to_finset_of_nodup _ (list.mem_insert_of_mem _ ainl))
theorem eq_or_mem_of_mem_insert {x a : A} {s : finset A} : x ∈ insert a s → x = a x ∈ s :=
quot.induction_on s (λ l : nodup_list A, λ H, list.eq_or_mem_of_mem_insert H)
theorem mem_of_mem_insert_of_ne {x a : A} {s : finset A} (xin : x ∈ insert a s) : x ≠ a → x ∈ s :=
or_resolve_right (eq_or_mem_of_mem_insert xin)
theorem mem_insert_iff (x a : A) (s : finset A) : x ∈ insert a s ↔ (x = a x ∈ s) :=
iff.intro !eq_or_mem_of_mem_insert
(or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem)
theorem mem_insert_eq (x a : A) (s : finset A) : x ∈ insert a s = (x = a x ∈ s) :=
propext !mem_insert_iff
theorem mem_singleton_iff (x a : A) : x ∈ '{a} ↔ (x = a) :=
by rewrite [mem_insert_eq, mem_empty_eq, or_false]
theorem mem_singleton (a : A) : a ∈ '{a} := mem_insert a ∅
theorem mem_singleton_of_eq {x a : A} (H : x = a) : x ∈ '{a} :=
by rewrite H; apply mem_insert
theorem eq_of_mem_singleton {x a : A} (H : x ∈ '{a}) : x = a := iff.mp !mem_singleton_iff H
theorem eq_of_singleton_eq {a b : A} (H : '{a} = '{b}) : a = b :=
have a ∈ '{b}, by rewrite -H; apply mem_singleton,
eq_of_mem_singleton this
theorem insert_eq_of_mem {a : A} {s : finset A} (H : a ∈ s) : insert a s = s :=
ext (λ x, eq.substr (mem_insert_eq x a s)
(or_iff_right_of_imp (λH1, eq.substr H1 H)))
theorem singleton_ne_empty (a : A) : '{a} ≠ ∅ :=
begin
intro H,
apply not_mem_empty a,
rewrite -H,
apply mem_insert
end
theorem pair_eq_singleton (a : A) : '{a, a} = '{a} :=
by rewrite [insert_eq_of_mem !mem_singleton]
-- useful in proofs by induction
theorem forall_of_forall_insert {P : A → Prop} {a : A} {s : finset A}
(H : ∀ x, x ∈ insert a s → P x) :
∀ x, x ∈ s → P x :=
λ x xs, H x (!mem_insert_of_mem xs)
theorem insert.comm (x y : A) (s : finset A) : insert x (insert y s) = insert y (insert x s) :=
ext (take a, by rewrite [*mem_insert_eq, propext !or.left_comm])
theorem card_insert_of_mem {a : A} {s : finset A} : a ∈ s → card (insert a s) = card s :=
quot.induction_on s
(λ (l : nodup_list A) (ainl : a ∈ ⟦l⟧), list.length_insert_of_mem ainl)
theorem card_insert_of_not_mem {a : A} {s : finset A} : a ∉ s → card (insert a s) = card s + 1 :=
quot.induction_on s
(λ (l : nodup_list A) (nainl : a ∉ ⟦l⟧), list.length_insert_of_not_mem nainl)
theorem card_insert_le (a : A) (s : finset A) :
card (insert a s) ≤ card s + 1 :=
if H : a ∈ s then by rewrite [card_insert_of_mem H]; apply le_succ
else by rewrite [card_insert_of_not_mem H]
protected theorem induction [recursor 6] {P : finset A → Prop}
(H1 : P empty)
(H2 : ∀ ⦃a : A⦄, ∀{s : finset A}, a ∉ s → P s → P (insert a s)) :
∀s, P s :=
take s,
quot.induction_on s
(take u,
subtype.destruct u
(take l,
list.induction_on l
(assume nodup_l, H1)
(take a l',
assume IH nodup_al',
assert aux₁: a ∉ l', from not_mem_of_nodup_cons nodup_al',
assert e : list.insert a l' = a :: l', from insert_eq_of_not_mem aux₁,
assert nodup l', from nodup_of_nodup_cons nodup_al',
assert P (quot.mk (subtype.tag l' this)), from IH this,
assert P (insert a (quot.mk (subtype.tag l' _))), from H2 aux₁ this,
begin
revert nodup_al',
rewrite [-e],
intros,
apply this
end)))
protected theorem induction_on {P : finset A → Prop} (s : finset A)
(H1 : P empty)
(H2 : ∀ ⦃a : A⦄, ∀ {s : finset A}, a ∉ s → P s → P (insert a s)) :
P s :=
finset.induction H1 H2 s
theorem exists_mem_of_ne_empty {s : finset A} : s ≠ ∅ → ∃ a : A, a ∈ s :=
begin
induction s with a s nin ih,
{intro h, exact absurd rfl h},
{intro h, existsi a, apply mem_insert}
end
theorem eq_empty_of_card_eq_zero {s : finset A} (H : card s = 0) : s = ∅ :=
begin
induction s with a s' H1 IH,
{ reflexivity },
{ rewrite (card_insert_of_not_mem H1) at H, apply nat.no_confusion H}
end
end insert
/- erase -/
section erase
variable [h : decidable_eq A]
include h
definition erase (a : A) (s : finset A) : finset A :=
quot.lift_on s
(λ l, to_finset_of_nodup (erase a (elt_of l)) (nodup_erase_of_nodup a (has_property l)))
(λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (erase_perm_erase_of_perm a p))
theorem not_mem_erase (a : A) (s : finset A) : a ∉ erase a s :=
quot.induction_on s
(λ l, list.mem_erase_of_nodup _ (has_property l))
theorem card_erase_of_mem {a : A} {s : finset A} : a ∈ s → card (erase a s) = pred (card s) :=
quot.induction_on s (λ l ainl, list.length_erase_of_mem ainl)
theorem card_erase_of_not_mem {a : A} {s : finset A} : a ∉ s → card (erase a s) = card s :=
quot.induction_on s (λ l nainl, list.length_erase_of_not_mem nainl)
theorem erase_empty (a : A) : erase a ∅ = ∅ :=
rfl
theorem ne_of_mem_erase {a b : A} {s : finset A} : b ∈ erase a s → b ≠ a :=
by intro h beqa; subst b; exact absurd h !not_mem_erase
theorem mem_of_mem_erase {a b : A} {s : finset A} : b ∈ erase a s → b ∈ s :=
quot.induction_on s (λ l bin, mem_of_mem_erase bin)
theorem mem_erase_of_ne_of_mem {a b : A} {s : finset A} : a ≠ b → a ∈ s → a ∈ erase b s :=
quot.induction_on s (λ l n ain, list.mem_erase_of_ne_of_mem n ain)
theorem mem_erase_iff (a b : A) (s : finset A) : a ∈ erase b s ↔ a ∈ s ∧ a ≠ b :=
iff.intro
(assume H, and.intro (mem_of_mem_erase H) (ne_of_mem_erase H))
(assume H, mem_erase_of_ne_of_mem (and.right H) (and.left H))
theorem mem_erase_eq (a b : A) (s : finset A) : a ∈ erase b s = (a ∈ s ∧ a ≠ b) :=
propext !mem_erase_iff
open decidable
theorem erase_insert {a : A} {s : finset A} : a ∉ s → erase a (insert a s) = s :=
λ anins, finset.ext (λ b, by_cases
(λ beqa : b = a, iff.intro
(λ bin, by subst b; exact absurd bin !not_mem_erase)
(λ bin, by subst b; contradiction))
(λ bnea : b ≠ a, iff.intro
(λ bin,
assert b ∈ insert a s, from mem_of_mem_erase bin,
mem_of_mem_insert_of_ne this bnea)
(λ bin,
have b ∈ insert a s, from mem_insert_of_mem _ bin,
mem_erase_of_ne_of_mem bnea this)))
theorem insert_erase {a : A} {s : finset A} : a ∈ s → insert a (erase a s) = s :=
λ ains, finset.ext (λ b, by_cases
(suppose b = a, iff.intro
(λ bin, by subst b; assumption)
(λ bin, by subst b; apply mem_insert))
(suppose b ≠ a, iff.intro
(λ bin, mem_of_mem_erase (mem_of_mem_insert_of_ne bin `b ≠ a`))
(λ bin, mem_insert_of_mem _ (mem_erase_of_ne_of_mem `b ≠ a` bin))))
end erase
/- union -/
section union
variable [h : decidable_eq A]
include h
definition union (s₁ s₂ : finset A) : finset A :=
quot.lift_on₂ s₁ s₂
(λ l₁ l₂,
to_finset_of_nodup (list.union (elt_of l₁) (elt_of l₂))
(nodup_union_of_nodup_of_nodup (has_property l₁) (has_property l₂)))
(λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_union p₁ p₂))
infix [priority finset.prio] := union
theorem mem_union_left {a : A} {s₁ : finset A} (s₂ : finset A) : a ∈ s₁ → a ∈ s₁ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁, list.mem_union_left _ ainl₁)
theorem mem_union_l {a : A} {s₁ : finset A} {s₂ : finset A} : a ∈ s₁ → a ∈ s₁ s₂ :=
mem_union_left s₂
theorem mem_union_right {a : A} {s₂ : finset A} (s₁ : finset A) : a ∈ s₂ → a ∈ s₁ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₂, list.mem_union_right _ ainl₂)
theorem mem_union_r {a : A} {s₂ : finset A} {s₁ : finset A} : a ∈ s₂ → a ∈ s₁ s₂ :=
mem_union_right s₁
theorem mem_or_mem_of_mem_union {a : A} {s₁ s₂ : finset A} : a ∈ s₁ s₂ → a ∈ s₁ a ∈ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_or_mem_of_mem_union ainl₁l₂)
theorem mem_union_iff (a : A) (s₁ s₂ : finset A) : a ∈ s₁ s₂ ↔ a ∈ s₁ a ∈ s₂ :=
iff.intro
(λ h, mem_or_mem_of_mem_union h)
(λ d, or.elim d
(λ i, mem_union_left _ i)
(λ i, mem_union_right _ i))
theorem mem_union_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ s₂) = (a ∈ s₁ a ∈ s₂) :=
propext !mem_union_iff
theorem union_comm (s₁ s₂ : finset A) : s₁ s₂ = s₂ s₁ :=
ext (λ a, by rewrite [*mem_union_eq]; exact or.comm)
theorem union_assoc (s₁ s₂ s₃ : finset A) : (s₁ s₂) s₃ = s₁ (s₂ s₃) :=
ext (λ a, by rewrite [*mem_union_eq]; exact or.assoc)
theorem union_left_comm (s₁ s₂ s₃ : finset A) : s₁ (s₂ s₃) = s₂ (s₁ s₃) :=
!left_comm union_comm union_assoc s₁ s₂ s₃
theorem union_right_comm (s₁ s₂ s₃ : finset A) : (s₁ s₂) s₃ = (s₁ s₃) s₂ :=
!right_comm union_comm union_assoc s₁ s₂ s₃
theorem union_self (s : finset A) : s s = s :=
ext (λ a, iff.intro
(λ ain, or.elim (mem_or_mem_of_mem_union ain) (λ i, i) (λ i, i))
(λ i, mem_union_left _ i))
theorem union_empty (s : finset A) : s ∅ = s :=
ext (λ a, iff.intro
(suppose a ∈ s ∅, or.elim (mem_or_mem_of_mem_union this) (λ i, i) (λ i, absurd i !not_mem_empty))
(suppose a ∈ s, mem_union_left _ this))
theorem empty_union (s : finset A) : ∅ s = s :=
calc ∅ s = s ∅ : union_comm
... = s : union_empty
theorem insert_eq (a : A) (s : finset A) : insert a s = '{a} s :=
ext (take x, by rewrite [mem_insert_iff, mem_union_iff, mem_singleton_iff])
theorem insert_union (a : A) (s t : finset A) : insert a (s t) = insert a s t :=
by rewrite [insert_eq, insert_eq a s, union_assoc]
end union
/- inter -/
section inter
variable [h : decidable_eq A]
include h
definition inter (s₁ s₂ : finset A) : finset A :=
quot.lift_on₂ s₁ s₂
(λ l₁ l₂,
to_finset_of_nodup (list.inter (elt_of l₁) (elt_of l₂))
(nodup_inter_of_nodup _ (has_property l₁)))
(λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_inter p₁ p₂))
infix [priority finset.prio] ∩ := inter
theorem mem_of_mem_inter_left {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∩ s₂ → a ∈ s₁ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_of_mem_inter_left ainl₁l₂)
theorem mem_of_mem_inter_right {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∩ s₂ → a ∈ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_of_mem_inter_right ainl₁l₂)
theorem mem_inter {a : A} {s₁ s₂ : finset A} : a ∈ s₁ → a ∈ s₂ → a ∈ s₁ ∩ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁ ainl₂, list.mem_inter_of_mem_of_mem ainl₁ ainl₂)
theorem mem_inter_iff (a : A) (s₁ s₂ : finset A) : a ∈ s₁ ∩ s₂ ↔ a ∈ s₁ ∧ a ∈ s₂ :=
iff.intro
(λ h, and.intro (mem_of_mem_inter_left h) (mem_of_mem_inter_right h))
(λ h, mem_inter (and.elim_left h) (and.elim_right h))
theorem mem_inter_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ ∩ s₂) = (a ∈ s₁ ∧ a ∈ s₂) :=
propext !mem_inter_iff
theorem inter_comm (s₁ s₂ : finset A) : s₁ ∩ s₂ = s₂ ∩ s₁ :=
ext (λ a, by rewrite [*mem_inter_eq]; exact and.comm)
theorem inter_assoc (s₁ s₂ s₃ : finset A) : (s₁ ∩ s₂) ∩ s₃ = s₁ ∩ (s₂ ∩ s₃) :=
ext (λ a, by rewrite [*mem_inter_eq]; exact and.assoc)
theorem inter_left_comm (s₁ s₂ s₃ : finset A) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) :=
!left_comm inter_comm inter_assoc s₁ s₂ s₃
theorem inter_right_comm (s₁ s₂ s₃ : finset A) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ :=
!right_comm inter_comm inter_assoc s₁ s₂ s₃
theorem inter_self (s : finset A) : s ∩ s = s :=
ext (λ a, iff.intro
(λ h, mem_of_mem_inter_right h)
(λ h, mem_inter h h))
theorem inter_empty (s : finset A) : s ∩ ∅ = ∅ :=
ext (λ a, iff.intro
(suppose a ∈ s ∩ ∅, absurd (mem_of_mem_inter_right this) !not_mem_empty)
(suppose a ∈ ∅, absurd this !not_mem_empty))
theorem empty_inter (s : finset A) : ∅ ∩ s = ∅ :=
calc ∅ ∩ s = s ∩ ∅ : inter_comm
... = ∅ : inter_empty
theorem singleton_inter_of_mem {a : A} {s : finset A} (H : a ∈ s) :
'{a} ∩ s = '{a} :=
ext (take x,
begin
rewrite [mem_inter_eq, !mem_singleton_iff],
exact iff.intro
(suppose x = a ∧ x ∈ s, and.left this)
(suppose x = a, and.intro this (eq.subst (eq.symm this) H))
end)
theorem singleton_inter_of_not_mem {a : A} {s : finset A} (H : a ∉ s) :
'{a} ∩ s = ∅ :=
ext (take x,
begin
rewrite [mem_inter_eq, !mem_singleton_iff, mem_empty_eq],
exact iff.intro
(suppose x = a ∧ x ∈ s, H (eq.subst (and.left this) (and.right this)))
(false.elim)
end)
end inter
/- distributivity laws -/
section inter
variable [h : decidable_eq A]
include h
theorem inter_distrib_left (s t u : finset A) : s ∩ (t u) = (s ∩ t) (s ∩ u) :=
ext (take x, by rewrite [mem_inter_eq, *mem_union_eq, *mem_inter_eq]; apply and.left_distrib)
theorem inter_distrib_right (s t u : finset A) : (s t) ∩ u = (s ∩ u) (t ∩ u) :=
ext (take x, by rewrite [mem_inter_eq, *mem_union_eq, *mem_inter_eq]; apply and.right_distrib)
theorem union_distrib_left (s t u : finset A) : s (t ∩ u) = (s t) ∩ (s u) :=
ext (take x, by rewrite [mem_union_eq, *mem_inter_eq, *mem_union_eq]; apply or.left_distrib)
theorem union_distrib_right (s t u : finset A) : (s ∩ t) u = (s u) ∩ (t u) :=
ext (take x, by rewrite [mem_union_eq, *mem_inter_eq, *mem_union_eq]; apply or.right_distrib)
end inter
/- disjoint -/
-- Mainly for internal use; library will use s₁ ∩ s₂ = ∅. Note that it does not require decidable equality.
definition disjoint (s₁ s₂ : finset A) : Prop :=
quot.lift_on₂ s₁ s₂ (λ l₁ l₂, disjoint (elt_of l₁) (elt_of l₂))
(λ v₁ v₂ w₁ w₂ p₁ p₂, propext (iff.intro
(λ d₁ a (ainw₁ : a ∈ elt_of w₁),
have a ∈ elt_of v₁, from mem_perm (perm.symm p₁) ainw₁,
have a ∉ elt_of v₂, from disjoint_left d₁ this,
not_mem_perm p₂ this)
(λ d₂ a (ainv₁ : a ∈ elt_of v₁),
have a ∈ elt_of w₁, from mem_perm p₁ ainv₁,
have a ∉ elt_of w₂, from disjoint_left d₂ this,
not_mem_perm (perm.symm p₂) this)))
theorem disjoint.elim {s₁ s₂ : finset A} {x : A} :
disjoint s₁ s₂ → x ∈ s₁ → x ∈ s₂ → false :=
quot.induction_on₂ s₁ s₂ (take u₁ u₂, assume H H1 H2, H x H1 H2)
theorem disjoint.intro {s₁ s₂ : finset A} : (∀{x : A}, x ∈ s₁ → x ∈ s₂ → false) → disjoint s₁ s₂ :=
quot.induction_on₂ s₁ s₂ (take u₁ u₂, assume H, H)
theorem inter_eq_empty_of_disjoint [h : decidable_eq A] {s₁ s₂ : finset A} (H : disjoint s₁ s₂) : s₁ ∩ s₂ = ∅ :=
ext (take x, iff_false_intro (assume H1,
disjoint.elim H (mem_of_mem_inter_left H1) (mem_of_mem_inter_right H1)))
theorem disjoint_of_inter_eq_empty [h : decidable_eq A] {s₁ s₂ : finset A} (H : s₁ ∩ s₂ = ∅) : disjoint s₁ s₂ :=
disjoint.intro (take x H1 H2,
have x ∈ s₁ ∩ s₂, from mem_inter H1 H2,
!not_mem_empty (eq.subst H this))
theorem disjoint.comm {s₁ s₂ : finset A} : disjoint s₁ s₂ → disjoint s₂ s₁ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ d, list.disjoint.comm d)
theorem inter_eq_empty [h : decidable_eq A] {s₁ s₂ : finset A}
(H : ∀x : A, x ∈ s₁ → x ∈ s₂ → false) : s₁ ∩ s₂ = ∅ :=
inter_eq_empty_of_disjoint (disjoint.intro H)
/- subset -/
definition subset (s₁ s₂ : finset A) : Prop :=
quot.lift_on₂ s₁ s₂
(λ l₁ l₂, sublist (elt_of l₁) (elt_of l₂))
(λ v₁ v₂ w₁ w₂ p₁ p₂, propext (iff.intro
(λ s₁ a i, mem_perm p₂ (s₁ a (mem_perm (perm.symm p₁) i)))
(λ s₂ a i, mem_perm (perm.symm p₂) (s₂ a (mem_perm p₁ i)))))
infix [priority finset.prio] ⊆ := subset
theorem empty_subset (s : finset A) : ∅ ⊆ s :=
quot.induction_on s (λ l, list.nil_sub (elt_of l))
theorem subset_univ [h : fintype A] (s : finset A) : s ⊆ univ :=
quot.induction_on s (λ l a i, fintype.complete a)
theorem subset.refl (s : finset A) : s ⊆ s :=
quot.induction_on s (λ l, list.sub.refl (elt_of l))
theorem subset.trans {s₁ s₂ s₃ : finset A} : s₁ ⊆ s₂ → s₂ ⊆ s₃ → s₁ ⊆ s₃ :=
quot.induction_on₃ s₁ s₂ s₃ (λ l₁ l₂ l₃ h₁ h₂, list.sub.trans h₁ h₂)
theorem mem_of_subset_of_mem {s₁ s₂ : finset A} {a : A} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h₁ h₂, h₁ a h₂)
theorem subset.antisymm {s₁ s₂ : finset A} (H₁ : s₁ ⊆ s₂) (H₂ : s₂ ⊆ s₁) : s₁ = s₂ :=
ext (take x, iff.intro (assume H, mem_of_subset_of_mem H₁ H) (assume H, mem_of_subset_of_mem H₂ H))
-- alternative name
theorem eq_of_subset_of_subset {s₁ s₂ : finset A} (H₁ : s₁ ⊆ s₂) (H₂ : s₂ ⊆ s₁) : s₁ = s₂ :=
subset.antisymm H₁ H₂
theorem subset_of_forall {s₁ s₂ : finset A} : (∀x, x ∈ s₁ → x ∈ s₂) → s₁ ⊆ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ H, H)
theorem subset_insert [h : decidable_eq A] (s : finset A) (a : A) : s ⊆ insert a s :=
subset_of_forall (take x, suppose x ∈ s, mem_insert_of_mem _ this)
theorem eq_empty_of_subset_empty {x : finset A} (H : x ⊆ ∅) : x = ∅ :=
subset.antisymm H (empty_subset x)
theorem subset_empty_iff (x : finset A) : x ⊆ ∅ ↔ x = ∅ :=
iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅)
section
variable [decA : decidable_eq A]
include decA
theorem erase_subset_erase (a : A) {s t : finset A} (H : s ⊆ t) : erase a s ⊆ erase a t :=
begin
apply subset_of_forall,
intro x,
rewrite *mem_erase_eq,
intro H',
show x ∈ t ∧ x ≠ a, from and.intro (mem_of_subset_of_mem H (and.left H')) (and.right H')
end
theorem erase_subset (a : A) (s : finset A) : erase a s ⊆ s :=
begin
apply subset_of_forall,
intro x,
rewrite mem_erase_eq,
intro H,
apply and.left H
end
theorem erase_eq_of_not_mem {a : A} {s : finset A} (anins : a ∉ s) : erase a s = s :=
eq_of_subset_of_subset !erase_subset
(subset_of_forall (take x, assume xs : x ∈ s,
have x ≠ a, from assume H', anins (eq.subst H' xs),
mem_erase_of_ne_of_mem this xs))
theorem erase_insert_subset (a : A) (s : finset A) : erase a (insert a s) ⊆ s :=
decidable.by_cases
(assume ains : a ∈ s, by rewrite [insert_eq_of_mem ains]; apply erase_subset)
(assume nains : a ∉ s, by rewrite [!erase_insert nains]; apply subset.refl)
theorem erase_subset_of_subset_insert {a : A} {s t : finset A} (H : s ⊆ insert a t) :
erase a s ⊆ t :=
subset.trans (!erase_subset_erase H) !erase_insert_subset
theorem insert_erase_subset (a : A) (s : finset A) : s ⊆ insert a (erase a s) :=
decidable.by_cases
(assume ains : a ∈ s, by rewrite [!insert_erase ains]; apply subset.refl)
(assume nains : a ∉ s, by rewrite[erase_eq_of_not_mem nains]; apply subset_insert)
theorem insert_subset_insert (a : A) {s t : finset A} (H : s ⊆ t) : insert a s ⊆ insert a t :=
begin
apply subset_of_forall,
intro x,
rewrite *mem_insert_eq,
intro H',
cases H' with [xeqa, xins],
exact (or.inl xeqa),
exact (or.inr (mem_of_subset_of_mem H xins))
end
theorem subset_insert_of_erase_subset {s t : finset A} {a : A} (H : erase a s ⊆ t) :
s ⊆ insert a t :=
subset.trans (insert_erase_subset a s) (!insert_subset_insert H)
theorem subset_insert_iff (s t : finset A) (a : A) : s ⊆ insert a t ↔ erase a s ⊆ t :=
iff.intro !erase_subset_of_subset_insert !subset_insert_of_erase_subset
end
/- upto -/
section upto
definition upto (n : nat) : finset nat :=
to_finset_of_nodup (list.upto n) (nodup_upto n)
theorem card_upto : ∀ n, card (upto n) = n :=
list.length_upto
theorem lt_of_mem_upto {n a : nat} : a ∈ upto n → a < n :=
list.lt_of_mem_upto
theorem mem_upto_succ_of_mem_upto {n a : nat} : a ∈ upto n → a ∈ upto (succ n) :=
list.mem_upto_succ_of_mem_upto
theorem mem_upto_of_lt {n a : nat} : a < n → a ∈ upto n :=
list.mem_upto_of_lt
theorem mem_upto_iff (a n : nat) : a ∈ upto n ↔ a < n :=
iff.intro lt_of_mem_upto mem_upto_of_lt
theorem mem_upto_eq (a n : nat) : a ∈ upto n = (a < n) :=
propext !mem_upto_iff
end upto
theorem upto_zero : upto 0 = ∅ := rfl
theorem upto_succ (n : ) : upto (succ n) = upto n '{n} :=
begin
apply ext, intro x,
rewrite [mem_union_iff, *mem_upto_iff, mem_singleton_iff, lt_succ_iff_le, nat.le_iff_lt_or_eq],
end
/- useful rules for calculations with quantifiers -/
theorem exists_mem_empty_iff {A : Type} (P : A → Prop) : (∃ x, x ∈ ∅ ∧ P x) ↔ false :=
iff.intro
(assume H,
obtain x (H1 : x ∈ ∅ ∧ P x), from H,
!not_mem_empty (and.left H1))
(assume H, false.elim H)
theorem exists_mem_empty_eq {A : Type} (P : A → Prop) : (∃ x, x ∈ ∅ ∧ P x) = false :=
propext !exists_mem_empty_iff
theorem exists_mem_insert_iff {A : Type} [d : decidable_eq A]
(a : A) (s : finset A) (P : A → Prop) :
(∃ x, x ∈ insert a s ∧ P x) ↔ P a (∃ x, x ∈ s ∧ P x) :=
iff.intro
(assume H,
obtain x [H1 H2], from H,
or.elim (eq_or_mem_of_mem_insert H1)
(suppose x = a, or.inl (eq.subst this H2))
(suppose x ∈ s, or.inr (exists.intro x (and.intro this H2))))
(assume H,
or.elim H
(suppose P a, exists.intro a (and.intro !mem_insert this))
(suppose ∃ x, x ∈ s ∧ P x,
obtain x [H2 H3], from this,
exists.intro x (and.intro (!mem_insert_of_mem H2) H3)))
theorem exists_mem_insert_eq {A : Type} [d : decidable_eq A] (a : A) (s : finset A) (P : A → Prop) :
(∃ x, x ∈ insert a s ∧ P x) = (P a (∃ x, x ∈ s ∧ P x)) :=
propext !exists_mem_insert_iff
theorem forall_mem_empty_iff {A : Type} (P : A → Prop) : (∀ x, x ∈ ∅ → P x) ↔ true :=
iff.intro
(assume H, trivial)
(assume H, take x, assume H', absurd H' !not_mem_empty)
theorem forall_mem_empty_eq {A : Type} (P : A → Prop) : (∀ x, x ∈ ∅ → P x) = true :=
propext !forall_mem_empty_iff
theorem forall_mem_insert_iff {A : Type} [d : decidable_eq A]
(a : A) (s : finset A) (P : A → Prop) :
(∀ x, x ∈ insert a s → P x) ↔ P a ∧ (∀ x, x ∈ s → P x) :=
iff.intro
(assume H, and.intro (H _ !mem_insert) (take x, assume H', H _ (!mem_insert_of_mem H')))
(assume H, take x, assume H' : x ∈ insert a s,
or.elim (eq_or_mem_of_mem_insert H')
(suppose x = a, eq.subst (eq.symm this) (and.left H))
(suppose x ∈ s, and.right H _ this))
theorem forall_mem_insert_eq {A : Type} [d : decidable_eq A] (a : A) (s : finset A) (P : A → Prop) :
(∀ x, x ∈ insert a s → P x) = (P a ∧ (∀ x, x ∈ s → P x)) :=
propext !forall_mem_insert_iff
end finset