lean2/tests/lean/tst6.lean.expected.out
Leonardo de Moura 51640ecff8 Move files in examples directory to tests directory. They are not real examples
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2013-08-31 19:16:30 -07:00

106 lines
4 KiB
Text
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Assumed: N
Assumed: h
Proved: CongrH
Set option: lean::pp::implicit
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) :=
Congr::explicit
N
(λ x : N, N)
(h a1)
(h b1)
a2
b2
(Congr::explicit N (λ x : N, N → N) h h a1 b1 (Refl::explicit (N → N → N) h) H1)
H2
Theorem CongrH::explicit (a1 a2 b1 b2 : N) (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) :=
CongrH::explicit a1 a2 b1 b2 H1 H2
Set option: lean::pp::implicit
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := Congr (Congr (Refl h) H1) H2
Theorem CongrH::explicit (a1 a2 b1 b2 : N) (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := CongrH H1 H2
Proved: Example1
Set option: lean::pp::implicit
Theorem Example1 (a b c d : N) (H : a = b ∧ b = c a = d ∧ d = c) : (h a b) = (h c b) :=
DisjCases::explicit
(a = b ∧ b = c)
(a = d ∧ d = c)
((h a b) = (h c b))
H
(λ H1 : a = b ∧ b = c,
CongrH::explicit
a
b
c
b
(Trans::explicit
N
a
b
c
(Conjunct1::explicit (a = b) (b = c) H1)
(Conjunct2::explicit (a = b) (b = c) H1))
(Refl::explicit N b))
(λ H1 : a = d ∧ d = c,
CongrH::explicit
a
b
c
b
(Trans::explicit
N
a
d
c
(Conjunct1::explicit (a = d) (d = c) H1)
(Conjunct2::explicit (a = d) (d = c) H1))
(Refl::explicit N b))
Proved: Example2
Set option: lean::pp::implicit
Theorem Example2 (a b c d : N) (H : a = b ∧ b = c a = d ∧ d = c) : (h a b) = (h c b) :=
DisjCases::explicit
(a = b ∧ b = c)
(a = d ∧ d = c)
((h a b) = (h c b))
H
(λ H1 : a = b ∧ b = c,
CongrH::explicit
a
b
c
b
(Trans::explicit
N
a
b
c
(Conjunct1::explicit (a = b) (b = c) H1)
(Conjunct2::explicit (a = b) (b = c) H1))
(Refl::explicit N b))
(λ H1 : a = d ∧ d = c,
CongrH::explicit
a
b
c
b
(Trans::explicit
N
a
d
c
(Conjunct1::explicit (a = d) (d = c) H1)
(Conjunct2::explicit (a = d) (d = c) H1))
(Refl::explicit N b))
Proved: Example3
Set option: lean::pp::implicit
Theorem Example3 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c a = d ∧ d = c) : (h a b) = (h c b) :=
DisjCases
H
(λ H1 : a = b ∧ b = e ∧ b = c, CongrH (Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1))) (Refl b))
(λ H1 : a = d ∧ d = c, CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
Proved: Example4
Set option: lean::pp::implicit
Theorem Example4 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c a = d ∧ d = c) : (h a c) = (h c a) :=
DisjCases
H
(λ H1 : a = b ∧ b = e ∧ b = c,
let AeqC := Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1)) in CongrH AeqC (Symm AeqC))
(λ H1 : a = d ∧ d = c, let AeqC := Trans (Conjunct1 H1) (Conjunct2 H1) in CongrH AeqC (Symm AeqC))