lean2/library/data/real/complete.lean

851 lines
26 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
The real numbers, constructed as equivalence classes of Cauchy sequences of rationals.
This construction follows Bishop and Bridges (1985).
At this point, we no longer proceed constructively: this file makes heavy use of decidability,
excluded middle, and Hilbert choice.
Here, we show that is complete.
-/
import data.real.basic data.real.order data.real.division data.rat data.nat data.pnat
import logic.choice
open -[coercions] rat
local notation 0 := rat.of_num 0
local notation 1 := rat.of_num 1
open -[coercions] nat
open eq.ops
open pnat
local notation 2 := subtype.tag (nat.of_num 2) dec_trivial
local notation 3 := subtype.tag (nat.of_num 3) dec_trivial
namespace s
theorem rat_approx_l1 {s : seq} (H : regular s) :
∀ n : +, ∃ q : , ∃ N : +, ∀ m : +, m ≥ N → abs (s m - q) ≤ n⁻¹ :=
begin
intro n,
existsi (s (2 * n)),
existsi 2 * n,
intro m Hm,
apply rat.le.trans,
apply H,
rewrite -(add_halves n),
apply rat.add_le_add_right,
apply inv_ge_of_le Hm
end
theorem rat_approx {s : seq} (H : regular s) :
∀ n : +, ∃ q : , s_le (s_abs (sadd s (sneg (const q)))) (const n⁻¹) :=
begin
intro m,
rewrite ↑s_le,
apply exists.elim (rat_approx_l1 H m),
intro q Hq,
apply exists.elim Hq,
intro N HN,
existsi q,
apply nonneg_of_bdd_within,
repeat (apply reg_add_reg | apply reg_neg_reg | apply abs_reg_of_reg | apply const_reg
| assumption),
intro n,
existsi N,
intro p Hp,
rewrite ↑[sadd, sneg, s_abs, const],
apply rat.le.trans,
rotate 1,
apply rat.sub_le_sub_left,
apply HN,
apply pnat.le.trans,
apply Hp,
rewrite -*pnat.mul.assoc,
apply pnat.mul_le_mul_left,
rewrite [sub_self, -neg_zero],
apply neg_le_neg,
apply rat.le_of_lt,
apply inv_pos
end
definition r_abs (s : reg_seq) : reg_seq :=
reg_seq.mk (s_abs (reg_seq.sq s)) (abs_reg_of_reg (reg_seq.is_reg s))
theorem abs_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
s_abs s ≡ s_abs t :=
begin
rewrite [↑equiv at *],
intro n,
rewrite ↑s_abs,
apply rat.le.trans,
apply abs_abs_sub_abs_le_abs_sub,
apply Heq
end
theorem r_abs_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_abs s) (r_abs t) :=
abs_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H
theorem r_rat_approx (s : reg_seq) :
∀ n : +, ∃ q : , r_le (r_abs (radd s (rneg (r_const q)))) (r_const n⁻¹) :=
rat_approx (reg_seq.is_reg s)
theorem const_bound {s : seq} (Hs : regular s) (n : +) :
s_le (s_abs (sadd s (sneg (const (s n))))) (const n⁻¹) :=
begin
rewrite ↑[s_le, nonneg, s_abs, sadd, sneg, const],
intro m,
apply iff.mp !rat.le_add_iff_neg_le_sub_left,
apply rat.le.trans,
apply Hs,
apply rat.add_le_add_right,
rewrite -*pnat.mul.assoc,
apply inv_ge_of_le,
apply pnat.mul_le_mul_left
end
theorem abs_const (a : ) : const (abs a) ≡ s_abs (const a) :=
begin
rewrite [↑s_abs, ↑const],
apply equiv.refl
end
theorem r_abs_const (a : ) : requiv (r_const (abs a) ) (r_abs (r_const a)) := abs_const a
theorem equiv_abs_of_ge_zero {s : seq} (Hs : regular s) (Hz : s_le zero s) : s_abs s ≡ s :=
begin
apply eq_of_bdd,
apply abs_reg_of_reg Hs,
apply Hs,
intro j,
rewrite ↑s_abs,
let Hz' := s_nonneg_of_ge_zero Hs Hz,
existsi 2 * j,
intro n Hn,
apply or.elim (decidable.em (s n ≥ 0)),
intro Hpos,
rewrite [rat.abs_of_nonneg Hpos, sub_self, abs_zero],
apply rat.le_of_lt,
apply inv_pos,
intro Hneg,
let Hneg' := lt_of_not_ge Hneg,
have Hsn : -s n - s n > 0, from add_pos (neg_pos_of_neg Hneg') (neg_pos_of_neg Hneg'),
rewrite [rat.abs_of_neg Hneg', rat.abs_of_pos Hsn],
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply rat.neg_le_neg; apply Hz'),
rewrite *rat.neg_neg,
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply inv_ge_of_le; apply Hn),
rewrite pnat.add_halves,
apply rat.le.refl
end
theorem equiv_neg_abs_of_le_zero {s : seq} (Hs : regular s) (Hz : s_le s zero) : s_abs s ≡ sneg s :=
begin
apply eq_of_bdd,
apply abs_reg_of_reg Hs,
apply reg_neg_reg Hs,
intro j,
rewrite [↑s_abs, ↑s_le at Hz],
have Hz' : nonneg (sneg s), begin
apply nonneg_of_nonneg_equiv,
rotate 3,
apply Hz,
rotate 2,
apply s_zero_add,
repeat (apply Hs | apply zero_is_reg | apply reg_neg_reg | apply reg_add_reg)
end,
existsi 2 * j,
intro n Hn,
apply or.elim (decidable.em (s n ≥ 0)),
intro Hpos,
have Hsn : s n + s n ≥ 0, from add_nonneg Hpos Hpos,
rewrite [rat.abs_of_nonneg Hpos, ↑sneg, rat.sub_neg_eq_add, rat.abs_of_nonneg Hsn],
rewrite [↑nonneg at Hz', ↑sneg at Hz'],
apply rat.le.trans,
apply rat.add_le_add,
repeat apply (rat.le_of_neg_le_neg !Hz'),
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply inv_ge_of_le; apply Hn),
rewrite pnat.add_halves,
apply rat.le.refl,
intro Hneg,
let Hneg' := lt_of_not_ge Hneg,
rewrite [rat.abs_of_neg Hneg', ↑sneg, rat.sub_neg_eq_add, rat.neg_add_eq_sub, rat.sub_self,
abs_zero],
apply rat.le_of_lt,
apply inv_pos
end
theorem r_equiv_abs_of_ge_zero {s : reg_seq} (Hz : r_le r_zero s) : requiv (r_abs s) s :=
equiv_abs_of_ge_zero (reg_seq.is_reg s) Hz
theorem r_equiv_neg_abs_of_le_zero {s : reg_seq} (Hz : r_le s r_zero) : requiv (r_abs s) (-s) :=
equiv_neg_abs_of_le_zero (reg_seq.is_reg s) Hz
end s
namespace real
open [classes] s
theorem p_add_fractions (n : +) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ :=
assert T : 2⁻¹ + 2⁻¹ * 3⁻¹ + 3⁻¹ = 1, from dec_trivial,
by rewrite[*inv_mul_eq_mul_inv,-*rat.right_distrib,T,rat.one_mul]
theorem rewrite_helper9 (a b c : ) : b - c = (b - a) - (c - a) :=
by rewrite[-sub_add_eq_sub_sub_swap,sub_add_cancel]
theorem rewrite_helper10 (a b c d : ) : c - d = (c - a) + (a - b) + (b - d) :=
by rewrite[*add_sub,*sub_add_cancel]
noncomputable definition rep (x : ) : s.reg_seq := some (quot.exists_rep x)
definition re_abs (x : ) : :=
quot.lift_on x (λ a, quot.mk (s.r_abs a)) (take a b Hab, quot.sound (s.r_abs_well_defined Hab))
theorem r_abs_nonneg {x : } : zero ≤ x → re_abs x = x :=
quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_abs_of_ge_zero Ha))
theorem r_abs_nonpos {x : } : x ≤ zero → re_abs x = -x :=
quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_neg_abs_of_le_zero Ha))
theorem abs_const' (a : ) : of_rat (rat.abs a) = re_abs (of_rat a) := quot.sound (s.r_abs_const a)
theorem re_abs_is_abs : re_abs = real.abs := funext
(begin
intro x,
apply eq.symm,
let Hor := decidable.em (zero ≤ x),
apply or.elim Hor,
intro Hor1,
rewrite [abs_of_nonneg Hor1, r_abs_nonneg Hor1],
intro Hor2,
have Hor2' : x ≤ zero, from le_of_lt (lt_of_not_ge Hor2),
rewrite [abs_of_neg (lt_of_not_ge Hor2), r_abs_nonpos Hor2']
end)
theorem abs_const (a : ) : of_rat (rat.abs a) = abs (of_rat a) :=
by rewrite -re_abs_is_abs -- ????
theorem rat_approx' (x : ) : ∀ n : +, ∃ q : , re_abs (x - of_rat q) ≤ of_rat n⁻¹ :=
quot.induction_on x (λ s n, s.r_rat_approx s n)
theorem rat_approx (x : ) : ∀ n : +, ∃ q : , abs (x - of_rat q) ≤ of_rat n⁻¹ :=
by rewrite -re_abs_is_abs; apply rat_approx'
noncomputable definition approx (x : ) (n : +) := some (rat_approx x n)
theorem approx_spec (x : ) (n : +) : abs (x - (of_rat (approx x n))) ≤ of_rat n⁻¹ :=
some_spec (rat_approx x n)
theorem approx_spec' (x : ) (n : +) : abs ((of_rat (approx x n)) - x) ≤ of_rat n⁻¹ :=
by rewrite abs_sub; apply approx_spec
notation `r_seq` := + →
noncomputable definition converges_to (X : r_seq) (a : ) (N : + → +) :=
∀ k : +, ∀ n : +, n ≥ N k → abs (X n - a) ≤ of_rat k⁻¹
noncomputable definition cauchy (X : r_seq) (M : + → +) :=
∀ k : +, ∀ m n : +, m ≥ M k → n ≥ M k → abs (X m - X n) ≤ of_rat k⁻¹
theorem cauchy_of_converges_to {X : r_seq} {a : } {N : + → +} (Hc : converges_to X a N) :
cauchy X (λ k, N (2 * k)) :=
begin
intro k m n Hm Hn,
rewrite (rewrite_helper9 a),
apply le.trans,
apply abs_add_le_abs_add_abs,
apply le.trans,
apply add_le_add,
apply Hc,
apply Hm,
krewrite abs_neg,
apply Hc,
apply Hn,
xrewrite of_rat_add,
apply of_rat_le_of_rat_of_le,
rewrite pnat.add_halves,
apply rat.le.refl
end
definition Nb (M : + → +) := λ k, pnat.max (3 * k) (M (2 * k))
theorem Nb_spec_right (M : + → +) (k : +) : M (2 * k) ≤ Nb M k := !max_right
theorem Nb_spec_left (M : + → +) (k : +) : 3 * k ≤ Nb M k := !max_left
noncomputable definition lim_seq {X : r_seq} {M : + → +} (Hc : cauchy X M) : + → :=
λ k, approx (X (Nb M k)) (2 * k)
theorem lim_seq_reg_helper {X : r_seq} {M : + → +} (Hc : cauchy X M) {m n : +}
(Hmn : M (2 * n) ≤M (2 * m)) :
abs (of_rat (lim_seq Hc m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs
(X (Nb M n) - of_rat (lim_seq Hc n)) ≤ of_rat (m⁻¹ + n⁻¹) :=
begin
apply le.trans,
apply add_le_add_three,
apply approx_spec',
rotate 1,
apply approx_spec,
rotate 1,
apply Hc,
rotate 1,
apply Nb_spec_right,
rotate 1,
apply pnat.le.trans,
apply Hmn,
apply Nb_spec_right,
rewrite [*of_rat_add, rat.add.assoc, pnat.add_halves],
apply of_rat_le_of_rat_of_le,
apply rat.add_le_add_right,
apply inv_ge_of_le,
apply pnat.mul_le_mul_left
end
theorem lim_seq_reg {X : r_seq} {M : + → +} (Hc : cauchy X M) : s.regular (lim_seq Hc) :=
begin
rewrite ↑s.regular,
intro m n,
apply le_of_rat_le_of_rat,
rewrite [abs_const, -of_rat_sub, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))],
apply real.le.trans,
apply abs_add_three,
let Hor := decidable.em (M (2 * m) ≥ M (2 * n)),
apply or.elim Hor,
intro Hor1,
apply lim_seq_reg_helper Hc Hor1,
intro Hor2,
let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2),
rewrite [real.abs_sub (X (Nb M n)), abs_sub (X (Nb M m)), abs_sub, -- ???
rat.add.comm, add_comm_three],
apply lim_seq_reg_helper Hc Hor2'
end
theorem lim_seq_spec {X : r_seq} {M : + → +} (Hc : cauchy X M) (k : +) :
s.s_le (s.s_abs (s.sadd (lim_seq Hc) (s.sneg (s.const (lim_seq Hc k))) )) (s.const k⁻¹) :=
begin
apply s.const_bound,
apply lim_seq_reg
end
noncomputable definition r_lim_seq {X : r_seq} {M : + → +} (Hc : cauchy X M) : s.reg_seq :=
s.reg_seq.mk (lim_seq Hc) (lim_seq_reg Hc)
theorem r_lim_seq_spec {X : r_seq} {M : + → +} (Hc : cauchy X M) (k : +) :
s.r_le (s.r_abs (( s.radd (r_lim_seq Hc) (s.rneg (s.r_const ((s.reg_seq.sq (r_lim_seq Hc)) k)))))) (s.r_const (k)⁻¹) :=
lim_seq_spec Hc k
noncomputable definition lim {X : r_seq} {M : + → +} (Hc : cauchy X M) : :=
quot.mk (r_lim_seq Hc)
theorem re_lim_spec {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
re_abs ((lim Hc) - (of_rat ((lim_seq Hc) k))) ≤ of_rat k⁻¹ :=
r_lim_seq_spec Hc k
theorem lim_spec' {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
abs ((lim Hc) - (of_rat ((lim_seq Hc) k))) ≤ of_rat k⁻¹ :=
by rewrite -re_abs_is_abs; apply re_lim_spec
theorem lim_spec {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
abs ((of_rat ((lim_seq Hc) k)) - (lim Hc)) ≤ of_rat (k)⁻¹ :=
by rewrite abs_sub; apply lim_spec'
theorem converges_of_cauchy {X : r_seq} {M : + → +} (Hc : cauchy X M) :
converges_to X (lim Hc) (Nb M) :=
begin
intro k n Hn,
rewrite (rewrite_helper10 (X (Nb M n)) (of_rat (lim_seq Hc n))),
apply le.trans,
apply abs_add_three,
apply le.trans,
apply add_le_add_three,
apply Hc,
apply pnat.le.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_right,
have HMk : M (2 * k) ≤ Nb M n, begin
apply pnat.le.trans,
apply Nb_spec_right,
apply pnat.le.trans,
apply Hn,
apply pnat.le.trans,
apply mul_le_mul_left 3,
apply Nb_spec_left
end,
apply HMk,
rewrite ↑lim_seq,
apply approx_spec,
apply lim_spec,
rewrite 2 of_rat_add,
apply of_rat_le_of_rat_of_le,
apply rat.le.trans,
apply rat.add_le_add_three,
apply rat.le.refl,
apply inv_ge_of_le,
apply pnat_mul_le_mul_left',
apply pnat.le.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_left,
apply inv_ge_of_le,
apply pnat.le.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_left,
rewrite [-*pnat.mul.assoc, p_add_fractions],
apply rat.le.refl
end
--------------------------------------------------
-- supremum property
-- this development roughly follows the proof of completeness done in Isabelle.
section supremum
open prod nat
local postfix `~` := nat_of_pnat
-- The top part of this section could be refactored. What is the appropriate place to define
-- bounds, supremum, etc? In algebra/ordered_field? They potentially apply to more than just .
local notation 2 := (1 : ) + 1
parameter X : → Prop
definition rpt {A : Type} (op : A → A) : → A → A
| rpt 0 := λ a, a
| rpt (succ k) := λ a, op (rpt k a)
definition ub (x : ) := ∀ y : , X y → y ≤ x
definition bounded := ∃ x : , ub x
definition sup (x : ) := ub x ∧ ∀ y : , ub y → x ≤ y
parameter elt :
hypothesis inh : X elt
parameter bound :
hypothesis bdd : ub bound
-- floor and ceil should be defined directly. I'm not sure of the best way to do this yet.
parameter floor : → int
parameter ceil : → int
hypothesis floor_spec : ∀ x : , of_rat (of_int (floor x)) ≤ x
hypothesis ceil_spec : ∀ x : , of_rat (of_int (ceil x)) ≥ x
hypothesis floor_succ : ∀ x : , int.lt (floor (x - 1)) (floor x)
hypothesis ceil_succ : ∀ x : , int.lt (ceil x) (ceil (x + 1))
include inh bdd floor_spec ceil_spec floor_succ ceil_succ
-- this should exist somewhere, no? I can't find it
theorem not_forall_of_exists_not {A : Type} {P : A → Prop} (H : ∃ a : A, ¬ P a) :
¬ ∀ a : A, P a :=
begin
intro Hall,
cases H with [a, Ha],
apply Ha (Hall a)
end
definition avg (a b : ) := a / 2 + b / 2
definition bisect (ab : × ) :=
if ub (avg (pr1 ab) (pr2 ab)) then
(pr1 ab, (avg (pr1 ab) (pr2 ab)))
else
(avg (pr1 ab) (pr2 ab), pr2 ab)
set_option pp.coercions true
definition under : := of_int (floor (elt - 1))
theorem under_spec1 : of_rat under < elt :=
have H : of_rat under < of_rat (of_int (floor elt)), begin
apply of_rat_lt_of_rat_of_lt,
apply iff.mpr !of_int_lt_of_int,
apply floor_succ
end,
lt_of_lt_of_le H !floor_spec
theorem under_spec : ¬ ub under :=
begin
rewrite ↑ub,
apply not_forall_of_exists_not,
existsi elt,
apply iff.mpr not_implies_iff_and_not,
apply and.intro,
apply inh,
apply not_le_of_gt under_spec1
end
definition over : := of_int (ceil (bound + 1)) -- b
theorem over_spec1 : bound < of_rat over :=
have H : of_rat (of_int (ceil bound)) < of_rat over, begin
apply of_rat_lt_of_rat_of_lt,
apply iff.mpr !of_int_lt_of_int,
apply ceil_succ
end,
lt_of_le_of_lt !ceil_spec H
theorem over_spec : ub over :=
begin
rewrite ↑ub,
intro y Hy,
apply le_of_lt,
apply lt_of_le_of_lt,
apply bdd,
apply Hy,
apply over_spec1
end
definition under_seq := λ n : , pr1 (rpt bisect n (under, over)) -- A
definition over_seq := λ n : , pr2 (rpt bisect n (under, over)) -- B
definition avg_seq := λ n : , avg (over_seq n) (under_seq n) -- C
theorem avg_symm (n : ) : avg_seq n = avg (under_seq n) (over_seq n) :=
by rewrite [↑avg_seq, ↑avg, rat.add.comm]
theorem over_0 : over_seq 0 = over := rfl
theorem under_0 : under_seq 0 = under := rfl
theorem succ_helper (n : ) : avg (pr1 (rpt bisect n (under, over))) (pr2 (rpt bisect n (under, over))) = avg_seq n :=
by rewrite avg_symm
theorem under_succ (n : ) : under_seq (succ n) =
(if ub (avg_seq n) then under_seq n else avg_seq n) :=
begin
cases (decidable.em (ub (avg_seq n))) with [Hub, Hub],
rewrite [if_pos Hub],
have H : pr1 (bisect (rpt bisect n (under, over))) = under_seq n, by
rewrite [↑under_seq, ↑bisect at {2}, -succ_helper at Hub, if_pos Hub],
apply H,
rewrite [if_neg Hub],
have H : pr1 (bisect (rpt bisect n (under, over))) = avg_seq n, by
rewrite [↑bisect at {2}, -succ_helper at Hub, if_neg Hub, avg_symm],
apply H
end
theorem over_succ (n : ) : over_seq (succ n) =
(if ub (avg_seq n) then avg_seq n else over_seq n) :=
begin
cases (decidable.em (ub (avg_seq n))) with [Hub, Hub],
rewrite [if_pos Hub],
have H : pr2 (bisect (rpt bisect n (under, over))) = avg_seq n, by
rewrite [↑bisect at {2}, -succ_helper at Hub, if_pos Hub, avg_symm],
apply H,
rewrite [if_neg Hub],
have H : pr2 (bisect (rpt bisect n (under, over))) = over_seq n, by
rewrite [↑over_seq, ↑bisect at {2}, -succ_helper at Hub, if_neg Hub],
apply H
end
-- ???
theorem rat.pow_add (a : ) (m : ) : ∀ n, rat.pow a (m + n) = rat.pow a m * rat.pow a n := rat.pow_add a m
theorem width (n : ) : over_seq n - under_seq n = (over - under) / (rat.pow 2 n) :=
nat.induction_on n
(by xrewrite [over_0, under_0, rat.pow_zero, rat.div_one])
(begin
intro a Ha,
rewrite [over_succ, under_succ],
let Hou := calc
(over_seq a) / 2 - (under_seq a) / 2 = ((over - under) / rat.pow 2 a) / 2 : by rewrite [rat.div_sub_div_same, Ha]
... = (over - under) / (rat.pow 2 a * 2) : rat.div_div_eq_div_mul (rat.ne_of_gt (rat.pow_pos dec_trivial _)) dec_trivial
... = (over - under) / rat.pow 2 (a + 1) : by rewrite rat.pow_add,
cases (decidable.em (ub (avg_seq a))),
rewrite [*if_pos a_1, -add_one, -Hou, ↑avg_seq, ↑avg, rat.add.assoc, rat.div_two_sub_self],
rewrite [*if_neg a_1, -add_one, -Hou, ↑avg_seq, ↑avg, rat.sub_add_eq_sub_sub, rat.sub_self_div_two]
end)
theorem binary_nat_bound (a : ) : of_nat a ≤ (rat.pow 2 a) :=
nat.induction_on a (rat.zero_le_one)
(take n, assume Hn,
calc
of_nat (succ n) = (of_nat n) + 1 : of_nat_add
... ≤ rat.pow 2 n + 1 : rat.add_le_add_right Hn
... ≤ rat.pow 2 n + rat.pow 2 n : rat.add_le_add_left (rat.pow_ge_one_of_ge_one rat.two_ge_one _)
... = rat.pow 2 (succ n) : rat.pow_two_add)
theorem binary_bound (a : ) : ∃ n : , a ≤ rat.pow 2 n :=
exists.intro (ubound a) (calc
a ≤ of_nat (ubound a) : ubound_ge
... ≤ rat.pow 2 (ubound a) : binary_nat_bound)
theorem rat_power_two_le (k : +) : rat_of_pnat k ≤ rat.pow 2 k~ :=
!binary_nat_bound
theorem width_narrows : ∃ n : , over_seq n - under_seq n ≤ 1 :=
begin
cases binary_bound (over - under) with [a, Ha],
existsi a,
rewrite (width a),
apply rat.div_le_of_le_mul,
apply rat.pow_pos dec_trivial,
rewrite rat.mul_one,
apply Ha
end
definition over' := over_seq (some width_narrows)
definition under' := under_seq (some width_narrows)
definition over_seq' := λ n, over_seq (n + some width_narrows)
definition under_seq' := λ n, under_seq (n + some width_narrows)
theorem over_seq'0 : over_seq' 0 = over' :=
by rewrite [↑over_seq', nat.zero_add]
theorem under_seq'0 : under_seq' 0 = under' :=
by rewrite [↑under_seq', nat.zero_add]
theorem under_over' : over' - under' ≤ 1 := some_spec width_narrows
theorem width' (n : ) : over_seq' n - under_seq' n ≤ 1 / rat.pow 2 n :=
nat.induction_on n
(begin
xrewrite [over_seq'0, under_seq'0, rat.pow_zero, rat.div_one],
apply under_over'
end)
(begin
intros a Ha,
rewrite [↑over_seq' at *, ↑under_seq' at *, *succ_add at *, width at *,
-add_one, -(add_one a), rat.pow_add, rat.pow_add _ a 1, *rat.pow_one],
apply rat.div_mul_le_div_mul_of_div_le_div_pos' Ha dec_trivial
end)
theorem PA (n : ) : ¬ ub (under_seq n) :=
nat.induction_on n
(by rewrite under_0; apply under_spec)
(begin
intro a Ha,
rewrite under_succ,
cases (decidable.em (ub (avg_seq a))),
rewrite (if_pos a_1),
assumption,
rewrite (if_neg a_1),
assumption
end)
theorem PB (n : ) : ub (over_seq n) :=
nat.induction_on n
(by rewrite over_0; apply over_spec)
(begin
intro a Ha,
rewrite over_succ,
cases (decidable.em (ub (avg_seq a))),
rewrite (if_pos a_1),
assumption,
rewrite (if_neg a_1),
assumption
end)
theorem under_lt_over : under < over :=
begin
cases (exists_not_of_not_forall under_spec) with [x, Hx],
cases ((iff.mp not_implies_iff_and_not) Hx) with [HXx, Hxu],
apply lt_of_rat_lt_of_rat,
apply lt_of_lt_of_le,
apply lt_of_not_ge Hxu,
apply over_spec _ HXx
end
theorem under_seq_lt_over_seq : ∀ m n : , under_seq m < over_seq n :=
begin
intros,
cases (exists_not_of_not_forall (PA m)) with [x, Hx],
cases ((iff.mp not_implies_iff_and_not) Hx) with [HXx, Hxu],
apply lt_of_rat_lt_of_rat,
apply lt_of_lt_of_le,
apply lt_of_not_ge Hxu,
apply PB,
apply HXx
end
theorem under_seq_lt_over_seq_single : ∀ n : , under_seq n < over_seq n :=
by intros; apply under_seq_lt_over_seq
theorem under_seq'_lt_over_seq' : ∀ m n : , under_seq' m < over_seq' n :=
by intros; apply under_seq_lt_over_seq
theorem under_seq'_lt_over_seq'_single : ∀ n : , under_seq' n < over_seq' n :=
by intros; apply under_seq_lt_over_seq
theorem under_seq_mono_helper (i k : ) : under_seq i ≤ under_seq (i + k) :=
(nat.induction_on k
(by rewrite nat.add_zero; apply rat.le.refl)
(begin
intros a Ha,
rewrite [add_succ, under_succ],
cases (decidable.em (ub (avg_seq (i + a)))) with [Havg, Havg],
rewrite (if_pos Havg),
apply Ha,
rewrite [if_neg Havg, ↑avg_seq, ↑avg],
apply rat.le.trans,
apply Ha,
rewrite -rat.add_halves at {1},
apply rat.add_le_add_right,
apply rat.div_le_div_of_le_of_pos,
apply rat.le_of_lt,
apply under_seq_lt_over_seq,
apply dec_trivial
end))
theorem under_seq_mono (i j : ) (H : i ≤ j) : under_seq i ≤ under_seq j :=
begin
cases le.elim H with [k, Hk'],
rewrite -Hk',
apply under_seq_mono_helper
end
theorem over_seq_mono_helper (i k : ) : over_seq (i + k) ≤ over_seq i :=
nat.induction_on k
(by rewrite nat.add_zero; apply rat.le.refl)
(begin
intros a Ha,
rewrite [add_succ, over_succ],
cases (decidable.em (ub (avg_seq (i + a)))) with [Havg, Havg],
rewrite [if_pos Havg, ↑avg_seq, ↑avg],
apply rat.le.trans,
rotate 1,
apply Ha,
rotate 1,
rewrite -{over_seq (i + a)}rat.add_halves at {2},
apply rat.add_le_add_left,
apply rat.div_le_div_of_le_of_pos,
apply rat.le_of_lt,
apply under_seq_lt_over_seq,
apply dec_trivial,
rewrite [if_neg Havg],
apply Ha
end)
theorem over_seq_mono (i j : ) (H : i ≤ j) : over_seq j ≤ over_seq i :=
begin
cases le.elim H with [k, Hk'],
rewrite -Hk',
apply over_seq_mono_helper
end
theorem rat_power_two_inv_ge (k : +) : 1 / rat.pow 2 k~ ≤ k⁻¹ :=
rat.div_le_div_of_le !rat_of_pnat_is_pos !rat_power_two_le
open s
theorem regular_lemma_helper {s : seq} {m n : +} (Hm : m ≤ n)
(H : ∀ n i : +, i ≥ n → under_seq' n~ ≤ s i ∧ s i ≤ over_seq' n~) :
rat.abs (s m - s n) ≤ m⁻¹ + n⁻¹ :=
begin
cases (H m n Hm) with [T1under, T1over],
cases (H m m (!pnat.le.refl)) with [T2under, T2over],
apply rat.le.trans,
apply rat.dist_bdd_within_interval,
apply under_seq'_lt_over_seq'_single,
rotate 1,
repeat assumption,
apply rat.le.trans,
apply width',
apply rat.le.trans,
apply rat_power_two_inv_ge,
apply rat.le_add_of_nonneg_right,
apply rat.le_of_lt (!inv_pos)
end
theorem regular_lemma (s : seq) (H : ∀ n i : +, i ≥ n → under_seq' n~ ≤ s i ∧ s i ≤ over_seq' n~) :
regular s :=
begin
rewrite ↑regular,
intros,
cases (decidable.em (m ≤ n)) with [Hm, Hn],
apply regular_lemma_helper Hm H,
let T := regular_lemma_helper (pnat.le_of_lt (pnat.lt_of_not_le Hn)) H,
rewrite [rat.abs_sub at T, {n⁻¹ + _}rat.add.comm at T],
exact T
end
definition p_under_seq : seq := λ n : +, under_seq' n~
definition p_over_seq : seq := λ n : +, over_seq' n~
theorem under_seq_regular : regular p_under_seq :=
begin
apply regular_lemma,
intros n i Hni,
apply and.intro,
apply under_seq_mono,
apply nat.add_le_add_right Hni,
apply rat.le_of_lt,
apply under_seq_lt_over_seq
end
theorem over_seq_regular : regular p_over_seq :=
begin
apply regular_lemma,
intros n i Hni,
apply and.intro,
apply rat.le_of_lt,
apply under_seq_lt_over_seq,
apply over_seq_mono,
apply nat.add_le_add_right Hni
end
definition sup_over : := quot.mk (reg_seq.mk p_over_seq over_seq_regular)
definition sup_under : := quot.mk (reg_seq.mk p_under_seq under_seq_regular)
theorem over_bound : ub sup_over :=
begin
rewrite ↑ub,
intros y Hy,
apply le_of_le_reprs,
intro n,
apply PB,
apply Hy
end
theorem under_lowest_bound : ∀ y : , ub y → sup_under ≤ y :=
begin
intros y Hy,
apply le_of_reprs_le,
intro n,
cases (exists_not_of_not_forall (PA _)) with [x, Hx],
cases (iff.mp not_implies_iff_and_not Hx) with [HXx, Hxn],
apply le.trans,
apply le_of_lt,
apply lt_of_not_ge Hxn,
apply Hy,
apply HXx
end
theorem under_over_equiv : p_under_seq ≡ p_over_seq :=
begin
rewrite ↑equiv,
intros,
apply rat.le.trans,
have H : p_under_seq n < p_over_seq n, from !under_seq_lt_over_seq,
rewrite [rat.abs_of_neg (iff.mpr !rat.sub_neg_iff_lt H), rat.neg_sub],
apply width',
apply rat.le.trans,
apply rat_power_two_inv_ge,
apply rat.le_add_of_nonneg_left,
apply rat.le_of_lt !inv_pos
end
theorem under_over_eq : sup_under = sup_over := quot.sound under_over_equiv
theorem supremum_of_complete : ∃ x : , sup x :=
exists.intro sup_over (and.intro over_bound (under_over_eq ▸ under_lowest_bound))
end supremum
end real