oplss2024/ahmed/day1.agda

108 lines
3.5 KiB
Agda
Raw Normal View History

2024-06-06 14:21:04 +00:00
module Ahmed.Day1 where
2024-06-04 14:31:23 +00:00
2024-06-11 02:56:36 +00:00
open import Agda.Builtin.Sigma
2024-06-07 14:22:38 +00:00
open import Data.Bool
2024-06-11 02:56:36 +00:00
open import Data.Empty
2024-06-07 14:22:38 +00:00
open import Data.Fin
2024-06-11 02:56:36 +00:00
open import Data.Maybe
open import Data.Nat
2024-06-07 14:22:38 +00:00
open import Data.Product
2024-06-11 02:56:36 +00:00
open import Data.Sum
open import Relation.Nullary
id : {A : Set} A A
id {A} x = x
2024-06-04 14:31:23 +00:00
2024-06-06 14:21:04 +00:00
data type : Set where
bool : type
2024-06-07 14:22:38 +00:00
_-→_ : type type type
2024-06-04 14:31:23 +00:00
2024-06-11 02:56:36 +00:00
data term : Set where
`_ : term
`true : term
`false : term
`if_then_else_ : term term term term
`λ[_]_ : (τ : type) (e : term) term
_∙_ : term term term
data ctx : Set where
nil : ctx
cons : ctx type ctx
lookup : ctx Maybe type
lookup nil _ = nothing
lookup (cons ctx₁ x) zero = just x
lookup (cons ctx₁ x) (suc n) = lookup ctx₁ n
data sub : Set where
nil : sub
cons : sub term sub
subst : term term term
subst (` zero) v = v
subst (` suc x) v = ` x
subst `true v = `true
subst `false v = `false
subst (`if x then x₁ else x₂) v = `if (subst x v) then (subst x₁ v) else (subst x₂ v)
subst (`λ[ τ ] x) v = `λ[ τ ] subst x v
subst (x x₁) v = (subst x v) (subst x₁ v)
data value-rel : type term Set where
v-`true : value-rel bool `true
v-`false : value-rel bool `false
v-`λ[_]_ : {τ e} value-rel τ (`λ[ τ ] e)
data good-subst : ctx sub Set where
nil : good-subst nil nil
cons : {ctx τ γ v}
good-subst ctx γ
value-rel τ v
good-subst (cons ctx τ) γ
data step : term term Set where
step-if-1 : {e₁ e₂} step (`if `true then e₁ else e₂) e₁
2024-06-11 13:09:51 +00:00
step-if-2 : {e₁ e₂} step (`if `false then e₁ else e₂) e₂
2024-06-11 02:56:36 +00:00
step-`λ : {τ e v} step ((`λ[ τ ] e) v) (subst e v)
data steps : term term Set where
zero : {e} steps zero e e
suc : {e e' e''} (n : ) step e e' steps n e' e'' steps (suc n) e e''
2024-06-11 13:16:03 +00:00
data _⊢__ : ctx term type Set where
type-`true : {ctx} ctx `true bool
type-`false : {ctx} ctx `false bool
2024-06-11 02:56:36 +00:00
type-`ifthenelse : {ctx e e₁ e₂ τ}
2024-06-11 13:16:03 +00:00
ctx e bool
ctx e₁ τ
ctx e₂ τ
ctx (`if e then e₁ else e₂) τ
2024-06-11 02:56:36 +00:00
type-`x : {ctx x}
(p : Is-just (lookup ctx x))
2024-06-11 13:16:03 +00:00
ctx (` x) (to-witness p)
2024-06-11 02:56:36 +00:00
type-`λ : {ctx τ τ₂ e}
2024-06-11 13:16:03 +00:00
(cons ctx τ) e τ₂
ctx (`λ[ τ ] e) (τ -→ τ₂)
2024-06-11 02:56:36 +00:00
type-∙ : {ctx τ₁ τ₂ e₁ e₂}
2024-06-11 13:16:03 +00:00
ctx e₁ (τ₁ -→ τ₂)
ctx e₂ τ₂
ctx (e₁ e₂) τ₂
2024-06-11 02:56:36 +00:00
irreducible : term Set
irreducible e = ¬ ( λ e' step e e')
data term-relation : type term Set where
e-term : {τ e}
( {n} (e' : term) steps n e e' irreducible e' value-rel τ e')
term-relation τ e
2024-06-11 13:16:03 +00:00
type-sound : {Γ e τ} Γ e τ Set
type-sound {Γ} {e} {τ} s = {n} (e' : term) steps n e e' value-rel τ e' λ e'' step e' e''
2024-06-11 02:56:36 +00:00
_⊨__ : (Γ : ctx) (e : term) (τ : type) Set
_⊨__ Γ e τ = (γ : sub) (good-subst Γ γ) term-relation τ e
2024-06-11 13:16:03 +00:00
fundamental : {Γ e τ} (well-typed : Γ e τ) type-sound well-typed Γ e τ
fundamental {Γ} {e} {τ} well-typed type-sound γ good-sub = e-term f
2024-06-11 02:56:36 +00:00
where
2024-06-11 13:09:51 +00:00
f : {n : } (e' : term) steps n e e' irreducible e' value-rel τ e'
2024-06-11 13:16:03 +00:00
f e' steps irred = [ id , (λ exists ⊥-elim (irred exists)) ] (type-sound e' steps)