improve face detection a lot
This commit is contained in:
parent
59ed744383
commit
0ddaf8d202
1 changed files with 60 additions and 35 deletions
|
@ -8,12 +8,18 @@ GREEN = "#0F0"
|
|||
BLUE = "#00F"
|
||||
RED = "#F00"
|
||||
|
||||
|
||||
def crop_image(im, settings):
|
||||
""" Intelligently crop an image to the subject matter """
|
||||
if im.height > im.width:
|
||||
im = im.resize((settings.crop_width, settings.crop_height * im.height // im.width))
|
||||
else:
|
||||
elif im.width > im.height:
|
||||
im = im.resize((settings.crop_width * im.width // im.height, settings.crop_height))
|
||||
else:
|
||||
im = im.resize((settings.crop_width, settings.crop_height))
|
||||
|
||||
if im.height == im.width:
|
||||
return im
|
||||
|
||||
focus = focal_point(im, settings)
|
||||
|
||||
|
@ -78,13 +84,18 @@ def focal_point(im, settings):
|
|||
[ PointOfInterest( p.x, p.y, weight=p.weight * ( (face_weight/weight_pref_total) / (len(face_points)/total_points) )) for p in face_points ]
|
||||
)
|
||||
|
||||
average_point = poi_average(pois, settings)
|
||||
|
||||
if settings.annotate_image:
|
||||
d = ImageDraw.Draw(im)
|
||||
|
||||
average_point = poi_average(pois, settings, im=im)
|
||||
|
||||
if settings.annotate_image:
|
||||
d.ellipse([average_point.x - 25, average_point.y - 25, average_point.x + 25, average_point.y + 25], outline=GREEN)
|
||||
for f in face_points:
|
||||
d.rectangle(f.bounding(f.size), outline=RED)
|
||||
for f in entropy_points:
|
||||
d.rectangle(f.bounding(30), outline=BLUE)
|
||||
for poi in pois:
|
||||
w = max(4, 4 * 0.5 * sqrt(poi.weight))
|
||||
d.ellipse(poi.bounding(w), fill=BLUE)
|
||||
d.ellipse(average_point.bounding(25), outline=GREEN)
|
||||
|
||||
return average_point
|
||||
|
||||
|
@ -92,22 +103,32 @@ def focal_point(im, settings):
|
|||
def image_face_points(im, settings):
|
||||
np_im = np.array(im)
|
||||
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
|
||||
classifier = cv2.CascadeClassifier(f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml')
|
||||
|
||||
minsize = int(min(im.width, im.height) * 0.15) # at least N percent of the smallest side
|
||||
faces = classifier.detectMultiScale(gray, scaleFactor=1.05,
|
||||
minNeighbors=5, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
|
||||
tries = [
|
||||
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
|
||||
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
|
||||
]
|
||||
|
||||
if len(faces) == 0:
|
||||
return []
|
||||
for t in tries:
|
||||
# print(t[0])
|
||||
classifier = cv2.CascadeClassifier(t[0])
|
||||
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
|
||||
try:
|
||||
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
|
||||
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
|
||||
except:
|
||||
continue
|
||||
|
||||
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
|
||||
if settings.annotate_image:
|
||||
for f in rects:
|
||||
d = ImageDraw.Draw(im)
|
||||
d.rectangle(f, outline=RED)
|
||||
|
||||
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2) for r in rects]
|
||||
if len(faces) > 0:
|
||||
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
|
||||
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2])) for r in rects]
|
||||
return []
|
||||
|
||||
|
||||
def image_corner_points(im, settings):
|
||||
|
@ -132,8 +153,8 @@ def image_corner_points(im, settings):
|
|||
|
||||
focal_points = []
|
||||
for point in points:
|
||||
x, y = point.ravel()
|
||||
focal_points.append(PointOfInterest(x, y))
|
||||
x, y = point.ravel()
|
||||
focal_points.append(PointOfInterest(x, y, size=4))
|
||||
|
||||
return focal_points
|
||||
|
||||
|
@ -167,31 +188,26 @@ def image_entropy_points(im, settings):
|
|||
x_mid = int(crop_best[0] + settings.crop_width/2)
|
||||
y_mid = int(crop_best[1] + settings.crop_height/2)
|
||||
|
||||
return [PointOfInterest(x_mid, y_mid)]
|
||||
return [PointOfInterest(x_mid, y_mid, size=25)]
|
||||
|
||||
|
||||
def image_entropy(im):
|
||||
# greyscale image entropy
|
||||
band = np.asarray(im.convert("1"))
|
||||
# band = np.asarray(im.convert("L"))
|
||||
band = np.asarray(im.convert("1"), dtype=np.uint8)
|
||||
hist, _ = np.histogram(band, bins=range(0, 256))
|
||||
hist = hist[hist > 0]
|
||||
return -np.log2(hist / hist.sum()).sum()
|
||||
|
||||
|
||||
def poi_average(pois, settings, im=None):
|
||||
def poi_average(pois, settings):
|
||||
weight = 0.0
|
||||
x = 0.0
|
||||
y = 0.0
|
||||
for pois in pois:
|
||||
if settings.annotate_image and im is not None:
|
||||
w = 4 * 0.5 * sqrt(pois.weight)
|
||||
d = ImageDraw.Draw(im)
|
||||
d.ellipse([
|
||||
pois.x - w, pois.y - w,
|
||||
pois.x + w, pois.y + w ], fill=BLUE)
|
||||
weight += pois.weight
|
||||
x += pois.x * pois.weight
|
||||
y += pois.y * pois.weight
|
||||
for poi in pois:
|
||||
weight += poi.weight
|
||||
x += poi.x * poi.weight
|
||||
y += poi.y * poi.weight
|
||||
avg_x = round(x / weight)
|
||||
avg_y = round(y / weight)
|
||||
|
||||
|
@ -199,10 +215,19 @@ def poi_average(pois, settings, im=None):
|
|||
|
||||
|
||||
class PointOfInterest:
|
||||
def __init__(self, x, y, weight=1.0):
|
||||
def __init__(self, x, y, weight=1.0, size=10):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.weight = weight
|
||||
self.size = size
|
||||
|
||||
def bounding(self, size):
|
||||
return [
|
||||
self.x - size//2,
|
||||
self.y - size//2,
|
||||
self.x + size//2,
|
||||
self.y + size//2
|
||||
]
|
||||
|
||||
|
||||
class Settings:
|
||||
|
|
Loading…
Reference in a new issue