This commit is contained in:
yfszzx 2022-10-12 20:48:03 +08:00
commit 511ca57e37
14 changed files with 130 additions and 64 deletions

View file

@ -2,7 +2,7 @@
name: Feature request name: Feature request
about: Suggest an idea for this project about: Suggest an idea for this project
title: '' title: ''
labels: '' labels: 'suggestion'
assignees: '' assignees: ''
--- ---

View file

@ -16,7 +16,7 @@ contextMenuInit = function(){
oldMenu.remove() oldMenu.remove()
} }
let tabButton = gradioApp().querySelector('button') let tabButton = uiCurrentTab
let baseStyle = window.getComputedStyle(tabButton) let baseStyle = window.getComputedStyle(tabButton)
const contextMenu = document.createElement('nav') const contextMenu = document.createElement('nav')
@ -123,16 +123,16 @@ contextMenuInit = function(){
return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener] return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]
} }
initResponse = contextMenuInit() initResponse = contextMenuInit();
appendContextMenuOption = initResponse[0] appendContextMenuOption = initResponse[0];
removeContextMenuOption = initResponse[1] removeContextMenuOption = initResponse[1];
addContextMenuEventListener = initResponse[2] addContextMenuEventListener = initResponse[2];
(function(){
//Start example Context Menu Items //Start example Context Menu Items
generateOnRepeatId = appendContextMenuOption('#txt2img_generate','Generate forever',function(){ let generateOnRepeat = function(genbuttonid,interruptbuttonid){
let genbutton = gradioApp().querySelector('#txt2img_generate'); let genbutton = gradioApp().querySelector(genbuttonid);
let interruptbutton = gradioApp().querySelector('#txt2img_interrupt'); let interruptbutton = gradioApp().querySelector(interruptbuttonid);
if(!interruptbutton.offsetParent){ if(!interruptbutton.offsetParent){
genbutton.click(); genbutton.click();
} }
@ -142,25 +142,34 @@ generateOnRepeatId = appendContextMenuOption('#txt2img_generate','Generate forev
genbutton.click(); genbutton.click();
} }
}, },
500)} 500)
) }
cancelGenerateForever = function(){ appendContextMenuOption('#txt2img_generate','Generate forever',function(){
generateOnRepeat('#txt2img_generate','#txt2img_interrupt');
})
appendContextMenuOption('#img2img_generate','Generate forever',function(){
generateOnRepeat('#img2img_generate','#img2img_interrupt');
})
let cancelGenerateForever = function(){
clearInterval(window.generateOnRepeatInterval) clearInterval(window.generateOnRepeatInterval)
} }
appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever) appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever) appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#img2img_interrupt','Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#roll','Roll three', appendContextMenuOption('#roll','Roll three',
function(){ function(){
let rollbutton = gradioApp().querySelector('#roll'); let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
setTimeout(function(){rollbutton.click()},100) setTimeout(function(){rollbutton.click()},100)
setTimeout(function(){rollbutton.click()},200) setTimeout(function(){rollbutton.click()},200)
setTimeout(function(){rollbutton.click()},300) setTimeout(function(){rollbutton.click()},300)
} }
) )
})();
//End example Context Menu Items //End example Context Menu Items
onUiUpdate(function(){ onUiUpdate(function(){

View file

@ -104,6 +104,7 @@ def prepare_enviroment():
args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test') args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test')
xformers = '--xformers' in args xformers = '--xformers' in args
deepdanbooru = '--deepdanbooru' in args deepdanbooru = '--deepdanbooru' in args
ngrok = '--ngrok' in args
try: try:
commit = run(f"{git} rev-parse HEAD").strip() commit = run(f"{git} rev-parse HEAD").strip()
@ -134,6 +135,9 @@ def prepare_enviroment():
if not is_installed("deepdanbooru") and deepdanbooru: if not is_installed("deepdanbooru") and deepdanbooru:
run_pip("install git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru") run_pip("install git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru")
if not is_installed("pyngrok") and ngrok:
run_pip("install pyngrok", "ngrok")
os.makedirs(dir_repos, exist_ok=True) os.makedirs(dir_repos, exist_ok=True)
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash) git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)

View file

@ -6,14 +6,14 @@ import gradio as gr
import modules.textual_inversion.textual_inversion import modules.textual_inversion.textual_inversion
import modules.textual_inversion.preprocess import modules.textual_inversion.preprocess
from modules import sd_hijack, shared from modules import sd_hijack, shared
from modules.hypernetwork import hypernetwork from modules.hypernetworks import hypernetwork
def create_hypernetwork(name): def create_hypernetwork(name):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists" assert not os.path.exists(fn), f"file {fn} already exists"
hypernet = modules.hypernetwork.hypernetwork.Hypernetwork(name=name) hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name)
hypernet.save(fn) hypernet.save(fn)
shared.reload_hypernetworks() shared.reload_hypernetworks()
@ -28,7 +28,7 @@ def train_hypernetwork(*args):
try: try:
sd_hijack.undo_optimizations() sd_hijack.undo_optimizations()
hypernetwork, filename = modules.hypernetwork.hypernetwork.train_hypernetwork(*args) hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args)
res = f""" res = f"""
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps. Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.

15
modules/ngrok.py Normal file
View file

@ -0,0 +1,15 @@
from pyngrok import ngrok, conf, exception
def connect(token, port):
if token == None:
token = 'None'
conf.get_default().auth_token = token
try:
public_url = ngrok.connect(port).public_url
except exception.PyngrokNgrokError:
print(f'Invalid ngrok authtoken, ngrok connection aborted.\n'
f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')
else:
print(f'ngrok connected to localhost:{port}! URL: {public_url}\n'
'You can use this link after the launch is complete.')

View file

@ -37,7 +37,7 @@ def apply_optimizations():
def undo_optimizations(): def undo_optimizations():
from modules.hypernetwork import hypernetwork from modules.hypernetworks import hypernetwork
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity

View file

@ -9,7 +9,7 @@ from ldm.util import default
from einops import rearrange from einops import rearrange
from modules import shared from modules import shared
from modules.hypernetwork import hypernetwork from modules.hypernetworks import hypernetwork
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:

View file

@ -57,7 +57,7 @@ def set_samplers():
global samplers, samplers_for_img2img global samplers, samplers_for_img2img
hidden = set(opts.hide_samplers) hidden = set(opts.hide_samplers)
hidden_img2img = set(opts.hide_samplers + ['PLMS', 'DPM fast', 'DPM adaptive']) hidden_img2img = set(opts.hide_samplers + ['PLMS'])
samplers = [x for x in all_samplers if x.name not in hidden] samplers = [x for x in all_samplers if x.name not in hidden]
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img] samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
@ -365,16 +365,26 @@ class KDiffusionSampler:
else: else:
sigmas = self.model_wrap.get_sigmas(steps) sigmas = self.model_wrap.get_sigmas(steps)
noise = noise * sigmas[steps - t_enc - 1] sigma_sched = sigmas[steps - t_enc - 1:]
xi = x + noise xi = x + noise * sigma_sched[0]
extra_params_kwargs = self.initialize(p) extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters:
sigma_sched = sigmas[steps - t_enc - 1:] ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
if 'sigma_max' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_max'] = sigma_sched[0]
if 'n' in inspect.signature(self.func).parameters:
extra_params_kwargs['n'] = len(sigma_sched) - 1
if 'sigma_sched' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_sched'] = sigma_sched
if 'sigmas' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigmas'] = sigma_sched
self.model_wrap_cfg.init_latent = x self.model_wrap_cfg.init_latent = x
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs) return self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None): def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
steps = steps or p.steps steps = steps or p.steps

View file

@ -14,7 +14,7 @@ import modules.sd_models
import modules.styles import modules.styles
import modules.devices as devices import modules.devices as devices
from modules import sd_samplers from modules import sd_samplers
from modules.hypernetwork import hypernetwork from modules.hypernetworks import hypernetwork
from modules.paths import models_path, script_path, sd_path from modules.paths import models_path, script_path, sd_path
sd_model_file = os.path.join(script_path, 'model.ckpt') sd_model_file = os.path.join(script_path, 'model.ckpt')
@ -38,6 +38,7 @@ parser.add_argument("--always-batch-cond-uncond", action='store_true', help="dis
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.") parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast") parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)") parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)")
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer')) parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN')) parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN')) parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))

View file

@ -52,6 +52,11 @@ if not cmd_opts.share and not cmd_opts.listen:
gradio.utils.version_check = lambda: None gradio.utils.version_check = lambda: None
gradio.utils.get_local_ip_address = lambda: '127.0.0.1' gradio.utils.get_local_ip_address = lambda: '127.0.0.1'
if cmd_opts.ngrok != None:
import modules.ngrok as ngrok
print('ngrok authtoken detected, trying to connect...')
ngrok.connect(cmd_opts.ngrok, cmd_opts.port if cmd_opts.port != None else 7860)
def gr_show(visible=True): def gr_show(visible=True):
return {"visible": visible, "__type__": "update"} return {"visible": visible, "__type__": "update"}
@ -430,7 +435,10 @@ def create_toprow(is_img2img):
with gr.Row(): with gr.Row():
with gr.Column(scale=8): with gr.Column(scale=8):
with gr.Row():
negative_prompt = gr.Textbox(label="Negative prompt", elem_id="negative_prompt", show_label=False, placeholder="Negative prompt", lines=2) negative_prompt = gr.Textbox(label="Negative prompt", elem_id="negative_prompt", show_label=False, placeholder="Negative prompt", lines=2)
with gr.Column(scale=1, elem_id="roll_col"):
sh = gr.Button(elem_id="sh", visible=True)
with gr.Column(scale=1, elem_id="style_neg_col"): with gr.Column(scale=1, elem_id="style_neg_col"):
prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1) prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1)
@ -560,7 +568,6 @@ def create_ui(wrap_gradio_gpu_call):
html_info = gr.HTML() html_info = gr.HTML()
generation_info = gr.Textbox(visible=False) generation_info = gr.Textbox(visible=False)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
@ -750,7 +757,6 @@ def create_ui(wrap_gradio_gpu_call):
html_info = gr.HTML() html_info = gr.HTML()
generation_info = gr.Textbox(visible=False) generation_info = gr.Textbox(visible=False)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
@ -1106,7 +1112,7 @@ def create_ui(wrap_gradio_gpu_call):
) )
create_hypernetwork.click( create_hypernetwork.click(
fn=modules.hypernetwork.ui.create_hypernetwork, fn=modules.hypernetworks.ui.create_hypernetwork,
inputs=[ inputs=[
new_hypernetwork_name, new_hypernetwork_name,
], ],
@ -1159,7 +1165,7 @@ def create_ui(wrap_gradio_gpu_call):
) )
train_hypernetwork.click( train_hypernetwork.click(
fn=wrap_gradio_gpu_call(modules.hypernetwork.ui.train_hypernetwork, extra_outputs=[gr.update()]), fn=wrap_gradio_gpu_call(modules.hypernetworks.ui.train_hypernetwork, extra_outputs=[gr.update()]),
_js="start_training_textual_inversion", _js="start_training_textual_inversion",
inputs=[ inputs=[
train_hypernetwork_name, train_hypernetwork_name,

View file

@ -11,7 +11,7 @@ import modules.scripts as scripts
import gradio as gr import gradio as gr
from modules import images from modules import images
from modules.hypernetwork import hypernetwork from modules.hypernetworks import hypernetwork
from modules.processing import process_images, Processed, get_correct_sampler from modules.processing import process_images, Processed, get_correct_sampler
from modules.shared import opts, cmd_opts, state from modules.shared import opts, cmd_opts, state
import modules.shared as shared import modules.shared as shared

View file

@ -2,6 +2,27 @@
max-width: 100%; max-width: 100%;
} }
#txt2img_token_counter {
height: 0px;
}
#img2img_token_counter {
height: 0px;
}
#sh{
min-width: 2em;
min-height: 2em;
max-width: 2em;
max-height: 2em;
flex-grow: 0;
padding-left: 0.25em;
padding-right: 0.25em;
margin: 0.1em 0;
opacity: 0%;
cursor: default;
}
.output-html p {margin: 0 0.5em;} .output-html p {margin: 0 0.5em;}
.row > *, .row > *,

View file

@ -29,7 +29,7 @@ from modules import devices
from modules import modelloader from modules import modelloader
from modules.paths import script_path from modules.paths import script_path
from modules.shared import cmd_opts from modules.shared import cmd_opts
import modules.hypernetwork.hypernetwork import modules.hypernetworks.hypernetwork
modelloader.cleanup_models() modelloader.cleanup_models()
modules.sd_models.setup_model() modules.sd_models.setup_model()
@ -83,7 +83,7 @@ modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
shared.sd_model = modules.sd_models.load_model() shared.sd_model = modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetwork.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
def webui(): def webui():