Merge branch 'ae'

This commit is contained in:
AUTOMATIC 2022-10-21 13:34:48 +03:00
commit 7d6b388d71
9 changed files with 326 additions and 21 deletions

View file

@ -71,6 +71,8 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
- Aesthetic Gradients, a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.

215
modules/aesthetic_clip.py Normal file
View file

@ -0,0 +1,215 @@
import copy
import itertools
import os
from pathlib import Path
import html
import gc
import gradio as gr
import torch
from PIL import Image
from torch import optim
from modules import shared
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizer
from tqdm.auto import tqdm, trange
from modules.shared import opts, device
def get_all_images_in_folder(folder):
return [os.path.join(folder, f) for f in os.listdir(folder) if
os.path.isfile(os.path.join(folder, f)) and check_is_valid_image_file(f)]
def check_is_valid_image_file(filename):
return filename.lower().endswith(('.png', '.jpg', '.jpeg', ".gif", ".tiff", ".webp"))
def batched(dataset, total, n=1):
for ndx in range(0, total, n):
yield [dataset.__getitem__(i) for i in range(ndx, min(ndx + n, total))]
def iter_to_batched(iterable, n=1):
it = iter(iterable)
while True:
chunk = tuple(itertools.islice(it, n))
if not chunk:
return
yield chunk
def create_ui():
with gr.Group():
with gr.Accordion("Open for Clip Aesthetic!", open=False):
with gr.Row():
aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight",
value=0.9)
aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5)
with gr.Row():
aesthetic_lr = gr.Textbox(label='Aesthetic learning rate',
placeholder="Aesthetic learning rate", value="0.0001")
aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
aesthetic_imgs = gr.Dropdown(sorted(shared.aesthetic_embeddings.keys()),
label="Aesthetic imgs embedding",
value="None")
with gr.Row():
aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs',
placeholder="This text is used to rotate the feature space of the imgs embs",
value="")
aesthetic_slerp_angle = gr.Slider(label='Slerp angle', minimum=0, maximum=1, step=0.01,
value=0.1)
aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False)
return aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative
def generate_imgs_embd(name, folder, batch_size):
# clipModel = CLIPModel.from_pretrained(
# shared.sd_model.cond_stage_model.clipModel.name_or_path
# )
model = shared.clip_model.to(device)
processor = CLIPProcessor.from_pretrained(model.name_or_path)
with torch.no_grad():
embs = []
for paths in tqdm(iter_to_batched(get_all_images_in_folder(folder), batch_size),
desc=f"Generating embeddings for {name}"):
if shared.state.interrupted:
break
inputs = processor(images=[Image.open(path) for path in paths], return_tensors="pt").to(device)
outputs = model.get_image_features(**inputs).cpu()
embs.append(torch.clone(outputs))
inputs.to("cpu")
del inputs, outputs
embs = torch.cat(embs, dim=0).mean(dim=0, keepdim=True)
# The generated embedding will be located here
path = str(Path(shared.cmd_opts.aesthetic_embeddings_dir) / f"{name}.pt")
torch.save(embs, path)
model = model.cpu()
del processor
del embs
gc.collect()
torch.cuda.empty_cache()
res = f"""
Done generating embedding for {name}!
Aesthetic embedding saved to {html.escape(path)}
"""
shared.update_aesthetic_embeddings()
return gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), label="Imgs embedding",
value="None"), \
gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()),
label="Imgs embedding",
value="None"), res, ""
def slerp(low, high, val):
low_norm = low / torch.norm(low, dim=1, keepdim=True)
high_norm = high / torch.norm(high, dim=1, keepdim=True)
omega = torch.acos((low_norm * high_norm).sum(1))
so = torch.sin(omega)
res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high
return res
class AestheticCLIP:
def __init__(self):
self.skip = False
self.aesthetic_steps = 0
self.aesthetic_weight = 0
self.aesthetic_lr = 0
self.slerp = False
self.aesthetic_text_negative = ""
self.aesthetic_slerp_angle = 0
self.aesthetic_imgs_text = ""
self.image_embs_name = None
self.image_embs = None
self.load_image_embs(None)
def set_aesthetic_params(self, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None,
aesthetic_slerp=True, aesthetic_imgs_text="",
aesthetic_slerp_angle=0.15,
aesthetic_text_negative=False):
self.aesthetic_imgs_text = aesthetic_imgs_text
self.aesthetic_slerp_angle = aesthetic_slerp_angle
self.aesthetic_text_negative = aesthetic_text_negative
self.slerp = aesthetic_slerp
self.aesthetic_lr = aesthetic_lr
self.aesthetic_weight = aesthetic_weight
self.aesthetic_steps = aesthetic_steps
self.load_image_embs(image_embs_name)
def set_skip(self, skip):
self.skip = skip
def load_image_embs(self, image_embs_name):
if image_embs_name is None or len(image_embs_name) == 0 or image_embs_name == "None":
image_embs_name = None
self.image_embs_name = None
if image_embs_name is not None and self.image_embs_name != image_embs_name:
self.image_embs_name = image_embs_name
self.image_embs = torch.load(shared.aesthetic_embeddings[self.image_embs_name], map_location=device)
self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True)
self.image_embs.requires_grad_(False)
def __call__(self, z, remade_batch_tokens):
if not self.skip and self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name is not None:
tokenizer = shared.sd_model.cond_stage_model.tokenizer
if not opts.use_old_emphasis_implementation:
remade_batch_tokens = [
[tokenizer.bos_token_id] + x[:75] + [tokenizer.eos_token_id] for x in
remade_batch_tokens]
tokens = torch.asarray(remade_batch_tokens).to(device)
model = copy.deepcopy(shared.clip_model).to(device)
model.requires_grad_(True)
if self.aesthetic_imgs_text is not None and len(self.aesthetic_imgs_text) > 0:
text_embs_2 = model.get_text_features(
**tokenizer([self.aesthetic_imgs_text], padding=True, return_tensors="pt").to(device))
if self.aesthetic_text_negative:
text_embs_2 = self.image_embs - text_embs_2
text_embs_2 /= text_embs_2.norm(dim=-1, keepdim=True)
img_embs = slerp(self.image_embs, text_embs_2, self.aesthetic_slerp_angle)
else:
img_embs = self.image_embs
with torch.enable_grad():
# We optimize the model to maximize the similarity
optimizer = optim.Adam(
model.text_model.parameters(), lr=self.aesthetic_lr
)
for _ in trange(self.aesthetic_steps, desc="Aesthetic optimization"):
text_embs = model.get_text_features(input_ids=tokens)
text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
sim = text_embs @ img_embs.T
loss = -sim
optimizer.zero_grad()
loss.mean().backward()
optimizer.step()
zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
if opts.CLIP_stop_at_last_layers > 1:
zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers]
zn = model.text_model.final_layer_norm(zn)
else:
zn = zn.last_hidden_state
model.cpu()
del model
gc.collect()
torch.cuda.empty_cache()
zn = torch.concat([zn[77 * i:77 * (i + 1)] for i in range(max(z.shape[1] // 77, 1))], 1)
if self.slerp:
z = slerp(z, zn, self.aesthetic_weight)
else:
z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight
return z

View file

@ -56,7 +56,7 @@ def process_batch(p, input_dir, output_dir, args):
processed_image.save(os.path.join(output_dir, filename))
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args):
is_inpaint = mode == 1
is_batch = mode == 2
@ -109,6 +109,11 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
inpainting_mask_invert=inpainting_mask_invert,
)
shared.aesthetic_clip.set_aesthetic_params(float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps),
aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text,
aesthetic_slerp_angle,
aesthetic_text_negative)
if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)

View file

@ -19,6 +19,7 @@ attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
def apply_optimizations():
undo_optimizations()
@ -223,7 +224,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
def process_text_old(self, text):
id_start = self.wrapped.tokenizer.bos_token_id
id_end = self.wrapped.tokenizer.eos_token_id
@ -280,7 +280,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
token_count = len(remade_tokens)
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end]
remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
@ -333,6 +333,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
z1 = self.process_tokens(tokens, multipliers)
z = z1 if z is None else torch.cat((z, z1), axis=-2)
z = shared.aesthetic_clip(z, remade_batch_tokens)
remade_batch_tokens = rem_tokens
batch_multipliers = rem_multipliers
@ -340,7 +341,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
return z
def process_tokens(self, remade_batch_tokens, batch_multipliers):
if not opts.use_old_emphasis_implementation:
remade_batch_tokens = [[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in remade_batch_tokens]
@ -385,8 +385,8 @@ class EmbeddingsWithFixes(torch.nn.Module):
for fixes, tensor in zip(batch_fixes, inputs_embeds):
for offset, embedding in fixes:
emb = embedding.vec
emb_len = min(tensor.shape[0]-offset-1, emb.shape[0])
tensor = torch.cat([tensor[0:offset+1], emb[0:emb_len], tensor[offset+1+emb_len:]])
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])
vecs.append(tensor)

View file

@ -21,7 +21,7 @@ checkpoints_loaded = collections.OrderedDict()
try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
from transformers import logging
from transformers import logging, CLIPModel
logging.set_verbosity_error()
except Exception:
@ -234,6 +234,9 @@ def load_model(checkpoint_info=None):
sd_hijack.model_hijack.hijack(sd_model)
if shared.clip_model is None or shared.clip_model.transformer.name_or_path != sd_model.cond_stage_model.wrapped.transformer.name_or_path:
shared.clip_model = CLIPModel.from_pretrained(sd_model.cond_stage_model.wrapped.transformer.name_or_path)
sd_model.eval()
print(f"Model loaded.")

View file

@ -3,6 +3,7 @@ import datetime
import json
import os
import sys
from collections import OrderedDict
import gradio as gr
import tqdm
@ -30,6 +31,7 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
parser.add_argument("--aesthetic_embeddings-dir", type=str, default=os.path.join(models_path, 'aesthetic_embeddings'), help="aesthetic_embeddings directory(default: aesthetic_embeddings)")
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
@ -106,6 +108,21 @@ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
loaded_hypernetwork = None
os.makedirs(cmd_opts.aesthetic_embeddings_dir, exist_ok=True)
aesthetic_embeddings = {}
def update_aesthetic_embeddings():
global aesthetic_embeddings
aesthetic_embeddings = {f.replace(".pt", ""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
aesthetic_embeddings = OrderedDict(**{"None": None}, **aesthetic_embeddings)
update_aesthetic_embeddings()
def reload_hypernetworks():
global hypernetworks
@ -387,6 +404,11 @@ sd_upscalers = []
sd_model = None
clip_model = None
from modules.aesthetic_clip import AestheticCLIP
aesthetic_clip = AestheticCLIP()
progress_print_out = sys.stdout

View file

@ -276,6 +276,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
loss.backward()
optimizer.step()
epoch_num = embedding.step // len(ds)
epoch_step = embedding.step - (epoch_num * len(ds)) + 1

View file

@ -1,12 +1,13 @@
import modules.scripts
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \
StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, cmd_opts
import modules.shared as shared
import modules.processing as processing
from modules.ui import plaintext_to_html
def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, *args):
def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args):
p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
@ -35,6 +36,10 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
firstphase_height=firstphase_height if enable_hr else None,
)
shared.aesthetic_clip.set_aesthetic_params(float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps),
aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle,
aesthetic_text_negative)
if cmd_opts.enable_console_prompts:
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
@ -53,4 +58,3 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
processed.images = []
return processed.images, generation_info_js, plaintext_to_html(processed.info)

View file

@ -25,7 +25,9 @@ import gradio.routes
from modules import sd_hijack, sd_models, localization
from modules.paths import script_path
from modules.shared import opts, cmd_opts, restricted_opts
from modules.shared import opts, cmd_opts, restricted_opts, aesthetic_embeddings
if cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
import modules.shared as shared
@ -41,8 +43,11 @@ from modules import prompt_parser
from modules.images import save_image
import modules.textual_inversion.ui
import modules.hypernetworks.ui
import modules.aesthetic_clip as aesthetic_clip
import modules.images_history as img_his
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
mimetypes.init()
mimetypes.add_type('application/javascript', '.js')
@ -655,6 +660,8 @@ def create_ui(wrap_gradio_gpu_call):
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative = aesthetic_clip.create_ui()
with gr.Group():
custom_inputs = modules.scripts.scripts_txt2img.setup_ui(is_img2img=False)
@ -709,7 +716,16 @@ def create_ui(wrap_gradio_gpu_call):
denoising_strength,
firstphase_width,
firstphase_height,
aesthetic_lr,
aesthetic_weight,
aesthetic_steps,
aesthetic_imgs,
aesthetic_slerp,
aesthetic_imgs_text,
aesthetic_slerp_angle,
aesthetic_text_negative
] + custom_inputs,
outputs=[
txt2img_gallery,
generation_info,
@ -870,6 +886,8 @@ def create_ui(wrap_gradio_gpu_call):
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
aesthetic_weight_im, aesthetic_steps_im, aesthetic_lr_im, aesthetic_slerp_im, aesthetic_imgs_im, aesthetic_imgs_text_im, aesthetic_slerp_angle_im, aesthetic_text_negative_im = aesthetic_clip.create_ui()
with gr.Group():
custom_inputs = modules.scripts.scripts_img2img.setup_ui(is_img2img=True)
@ -960,6 +978,14 @@ def create_ui(wrap_gradio_gpu_call):
inpainting_mask_invert,
img2img_batch_input_dir,
img2img_batch_output_dir,
aesthetic_lr_im,
aesthetic_weight_im,
aesthetic_steps_im,
aesthetic_imgs_im,
aesthetic_slerp_im,
aesthetic_imgs_text_im,
aesthetic_slerp_angle_im,
aesthetic_text_negative_im,
] + custom_inputs,
outputs=[
img2img_gallery,
@ -1220,6 +1246,18 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
create_embedding = gr.Button(value="Create embedding", variant='primary')
with gr.Tab(label="Create aesthetic images embedding"):
new_embedding_name_ae = gr.Textbox(label="Name")
process_src_ae = gr.Textbox(label='Source directory')
batch_ae = gr.Slider(minimum=1, maximum=1024, step=1, label="Batch size", value=256)
with gr.Row():
with gr.Column(scale=3):
gr.HTML(value="")
with gr.Column():
create_embedding_ae = gr.Button(value="Create images embedding", variant='primary')
with gr.Tab(label="Create hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
@ -1309,6 +1347,21 @@ def create_ui(wrap_gradio_gpu_call):
]
)
create_embedding_ae.click(
fn=aesthetic_clip.generate_imgs_embd,
inputs=[
new_embedding_name_ae,
process_src_ae,
batch_ae
],
outputs=[
aesthetic_imgs,
aesthetic_imgs_im,
ti_output,
ti_outcome,
]
)
create_hypernetwork.click(
fn=modules.hypernetworks.ui.create_hypernetwork,
inputs=[