[API][Feature] - Add img2img API endpoint
This commit is contained in:
parent
1fbfc052eb
commit
a7c213d0f5
3 changed files with 63 additions and 8 deletions
|
@ -1,5 +1,5 @@
|
||||||
from modules.api.processing import StableDiffusionProcessingAPI
|
from modules.api.processing import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI
|
||||||
from modules.processing import StableDiffusionProcessingTxt2Img, process_images
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||||
from modules.sd_samplers import all_samplers
|
from modules.sd_samplers import all_samplers
|
||||||
from modules.extras import run_pnginfo
|
from modules.extras import run_pnginfo
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
|
@ -10,6 +10,7 @@ from pydantic import BaseModel, Field, Json
|
||||||
import json
|
import json
|
||||||
import io
|
import io
|
||||||
import base64
|
import base64
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
|
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
|
||||||
|
|
||||||
|
@ -18,6 +19,11 @@ class TextToImageResponse(BaseModel):
|
||||||
parameters: Json
|
parameters: Json
|
||||||
info: Json
|
info: Json
|
||||||
|
|
||||||
|
class ImageToImageResponse(BaseModel):
|
||||||
|
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||||
|
parameters: Json
|
||||||
|
info: Json
|
||||||
|
|
||||||
|
|
||||||
class Api:
|
class Api:
|
||||||
def __init__(self, app, queue_lock):
|
def __init__(self, app, queue_lock):
|
||||||
|
@ -25,8 +31,9 @@ class Api:
|
||||||
self.app = app
|
self.app = app
|
||||||
self.queue_lock = queue_lock
|
self.queue_lock = queue_lock
|
||||||
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"])
|
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"])
|
||||||
|
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"])
|
||||||
|
|
||||||
def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ):
|
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||||
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
||||||
|
|
||||||
if sampler_index is None:
|
if sampler_index is None:
|
||||||
|
@ -54,8 +61,49 @@ class Api:
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def img2imgapi(self):
|
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
||||||
raise NotImplementedError
|
sampler_index = sampler_to_index(img2imgreq.sampler_index)
|
||||||
|
|
||||||
|
if sampler_index is None:
|
||||||
|
raise HTTPException(status_code=404, detail="Sampler not found")
|
||||||
|
|
||||||
|
|
||||||
|
init_images = img2imgreq.init_images
|
||||||
|
if init_images is None:
|
||||||
|
raise HTTPException(status_code=404, detail="Init image not found")
|
||||||
|
|
||||||
|
|
||||||
|
populate = img2imgreq.copy(update={ # Override __init__ params
|
||||||
|
"sd_model": shared.sd_model,
|
||||||
|
"sampler_index": sampler_index[0],
|
||||||
|
"do_not_save_samples": True,
|
||||||
|
"do_not_save_grid": True
|
||||||
|
}
|
||||||
|
)
|
||||||
|
p = StableDiffusionProcessingImg2Img(**vars(populate))
|
||||||
|
|
||||||
|
imgs = []
|
||||||
|
for img in init_images:
|
||||||
|
# if has a comma, deal with prefix
|
||||||
|
if "," in img:
|
||||||
|
img = img.split(",")[1]
|
||||||
|
# convert base64 to PIL image
|
||||||
|
img = base64.b64decode(img)
|
||||||
|
img = Image.open(io.BytesIO(img))
|
||||||
|
imgs = [img] * p.batch_size
|
||||||
|
|
||||||
|
p.init_images = imgs
|
||||||
|
# Override object param
|
||||||
|
with self.queue_lock:
|
||||||
|
processed = process_images(p)
|
||||||
|
|
||||||
|
b64images = []
|
||||||
|
for i in processed.images:
|
||||||
|
buffer = io.BytesIO()
|
||||||
|
i.save(buffer, format="png")
|
||||||
|
b64images.append(base64.b64encode(buffer.getvalue()))
|
||||||
|
|
||||||
|
return ImageToImageResponse(images=b64images, parameters=json.dumps(vars(img2imgreq)), info=json.dumps(processed.info))
|
||||||
|
|
||||||
def extrasapi(self):
|
def extrasapi(self):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
|
@ -1,7 +1,8 @@
|
||||||
|
from array import array
|
||||||
from inflection import underscore
|
from inflection import underscore
|
||||||
from typing import Any, Dict, Optional
|
from typing import Any, Dict, Optional
|
||||||
from pydantic import BaseModel, Field, create_model
|
from pydantic import BaseModel, Field, create_model
|
||||||
from modules.processing import StableDiffusionProcessingTxt2Img
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
|
||||||
import inspect
|
import inspect
|
||||||
|
|
||||||
|
|
||||||
|
@ -92,8 +93,14 @@ class PydanticModelGenerator:
|
||||||
DynamicModel.__config__.allow_mutation = True
|
DynamicModel.__config__.allow_mutation = True
|
||||||
return DynamicModel
|
return DynamicModel
|
||||||
|
|
||||||
StableDiffusionProcessingAPI = PydanticModelGenerator(
|
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
|
||||||
"StableDiffusionProcessingTxt2Img",
|
"StableDiffusionProcessingTxt2Img",
|
||||||
StableDiffusionProcessingTxt2Img,
|
StableDiffusionProcessingTxt2Img,
|
||||||
[{"key": "sampler_index", "type": str, "default": "Euler"}]
|
[{"key": "sampler_index", "type": str, "default": "Euler"}]
|
||||||
).generate_model()
|
).generate_model()
|
||||||
|
|
||||||
|
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
||||||
|
"StableDiffusionProcessingImg2Img",
|
||||||
|
StableDiffusionProcessingImg2Img,
|
||||||
|
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}]
|
||||||
|
).generate_model()
|
|
@ -623,7 +623,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||||
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||||
sampler = None
|
sampler = None
|
||||||
|
|
||||||
def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0, **kwargs):
|
def __init__(self, init_images: list=None, resize_mode: int=0, denoising_strength: float=0.75, mask: str=None, mask_blur: int=4, inpainting_fill: int=0, inpaint_full_res: bool=True, inpaint_full_res_padding: int=0, inpainting_mask_invert: int=0, **kwargs):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
|
|
||||||
self.init_images = init_images
|
self.init_images = init_images
|
||||||
|
|
Loading…
Reference in a new issue