[API][Feature] - Add img2img API endpoint

This commit is contained in:
Stephen 2022-10-21 19:27:40 -04:00 committed by AUTOMATIC1111
parent 1fbfc052eb
commit a7c213d0f5
3 changed files with 63 additions and 8 deletions

View file

@ -1,5 +1,5 @@
from modules.api.processing import StableDiffusionProcessingAPI from modules.api.processing import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI
from modules.processing import StableDiffusionProcessingTxt2Img, process_images from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.sd_samplers import all_samplers from modules.sd_samplers import all_samplers
from modules.extras import run_pnginfo from modules.extras import run_pnginfo
import modules.shared as shared import modules.shared as shared
@ -10,6 +10,7 @@ from pydantic import BaseModel, Field, Json
import json import json
import io import io
import base64 import base64
from PIL import Image
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
@ -18,6 +19,11 @@ class TextToImageResponse(BaseModel):
parameters: Json parameters: Json
info: Json info: Json
class ImageToImageResponse(BaseModel):
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
parameters: Json
info: Json
class Api: class Api:
def __init__(self, app, queue_lock): def __init__(self, app, queue_lock):
@ -25,8 +31,9 @@ class Api:
self.app = app self.app = app
self.queue_lock = queue_lock self.queue_lock = queue_lock
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"]) self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"])
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"])
def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ): def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
sampler_index = sampler_to_index(txt2imgreq.sampler_index) sampler_index = sampler_to_index(txt2imgreq.sampler_index)
if sampler_index is None: if sampler_index is None:
@ -54,8 +61,49 @@ class Api:
def img2imgapi(self): def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
raise NotImplementedError sampler_index = sampler_to_index(img2imgreq.sampler_index)
if sampler_index is None:
raise HTTPException(status_code=404, detail="Sampler not found")
init_images = img2imgreq.init_images
if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found")
populate = img2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
"sampler_index": sampler_index[0],
"do_not_save_samples": True,
"do_not_save_grid": True
}
)
p = StableDiffusionProcessingImg2Img(**vars(populate))
imgs = []
for img in init_images:
# if has a comma, deal with prefix
if "," in img:
img = img.split(",")[1]
# convert base64 to PIL image
img = base64.b64decode(img)
img = Image.open(io.BytesIO(img))
imgs = [img] * p.batch_size
p.init_images = imgs
# Override object param
with self.queue_lock:
processed = process_images(p)
b64images = []
for i in processed.images:
buffer = io.BytesIO()
i.save(buffer, format="png")
b64images.append(base64.b64encode(buffer.getvalue()))
return ImageToImageResponse(images=b64images, parameters=json.dumps(vars(img2imgreq)), info=json.dumps(processed.info))
def extrasapi(self): def extrasapi(self):
raise NotImplementedError raise NotImplementedError

View file

@ -1,7 +1,8 @@
from array import array
from inflection import underscore from inflection import underscore
from typing import Any, Dict, Optional from typing import Any, Dict, Optional
from pydantic import BaseModel, Field, create_model from pydantic import BaseModel, Field, create_model
from modules.processing import StableDiffusionProcessingTxt2Img from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
import inspect import inspect
@ -92,8 +93,14 @@ class PydanticModelGenerator:
DynamicModel.__config__.allow_mutation = True DynamicModel.__config__.allow_mutation = True
return DynamicModel return DynamicModel
StableDiffusionProcessingAPI = PydanticModelGenerator( StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingTxt2Img", "StableDiffusionProcessingTxt2Img",
StableDiffusionProcessingTxt2Img, StableDiffusionProcessingTxt2Img,
[{"key": "sampler_index", "type": str, "default": "Euler"}] [{"key": "sampler_index", "type": str, "default": "Euler"}]
).generate_model()
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingImg2Img",
StableDiffusionProcessingImg2Img,
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}]
).generate_model() ).generate_model()

View file

@ -623,7 +623,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
sampler = None sampler = None
def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0, **kwargs): def __init__(self, init_images: list=None, resize_mode: int=0, denoising_strength: float=0.75, mask: str=None, mask_blur: int=4, inpainting_fill: int=0, inpaint_full_res: bool=True, inpaint_full_res_padding: int=0, inpainting_mask_invert: int=0, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
self.init_images = init_images self.init_images = init_images