55 lines
1.6 KiB
Python
55 lines
1.6 KiB
Python
import glob
|
|
import os
|
|
import torch
|
|
from modules import devices
|
|
|
|
|
|
class HypernetworkModule(torch.nn.Module):
|
|
def __init__(self, dim, state_dict):
|
|
super().__init__()
|
|
|
|
self.linear1 = torch.nn.Linear(dim, dim * 2)
|
|
self.linear2 = torch.nn.Linear(dim * 2, dim)
|
|
|
|
self.load_state_dict(state_dict, strict=True)
|
|
self.to(devices.device)
|
|
|
|
def forward(self, x):
|
|
return x + (self.linear2(self.linear1(x)))
|
|
|
|
|
|
class Hypernetwork:
|
|
filename = None
|
|
name = None
|
|
|
|
def __init__(self, filename):
|
|
self.filename = filename
|
|
self.name = os.path.splitext(os.path.basename(filename))[0]
|
|
self.layers = {}
|
|
|
|
state_dict = torch.load(filename, map_location='cpu')
|
|
for size, sd in state_dict.items():
|
|
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
|
|
|
|
|
|
def load_hypernetworks(path):
|
|
res = {}
|
|
|
|
for filename in glob.iglob(path + '**/*.pt', recursive=True):
|
|
hn = Hypernetwork(filename)
|
|
res[hn.name] = hn
|
|
|
|
return res
|
|
|
|
def apply(self, x, context=None, mask=None, original=None):
|
|
|
|
|
|
if CrossAttention.hypernetwork is not None and context.shape[2] in CrossAttention.hypernetwork:
|
|
if context.shape[1] == 77 and CrossAttention.noise_cond:
|
|
context = context + (torch.randn_like(context) * 0.1)
|
|
h_k, h_v = CrossAttention.hypernetwork[context.shape[2]]
|
|
k = self.to_k(h_k(context))
|
|
v = self.to_v(h_v(context))
|
|
else:
|
|
k = self.to_k(context)
|
|
v = self.to_v(context)
|