type-theory/notes/HLevels.md

28 lines
636 B
Markdown
Raw Normal View History

2024-10-17 19:11:30 +00:00
# Properties
- Theorem 7.1.4:
2024-10-17 19:15:19 +00:00
- IF: $X$ is an $n$ type
2024-10-17 19:11:30 +00:00
- IF: $X \rightarrow Y$ is a retraction (has a left-inverse)
2024-10-17 19:15:19 +00:00
- THEN: $Y$ is an $n$ type
2024-10-17 19:11:30 +00:00
- Corollary 7.1.5:
- IF: $X \simeq Y$
2024-10-17 19:15:19 +00:00
- IF: $X$ is an $n$ type
- THEN: $Y$ is an $n$ type
2024-10-17 19:11:30 +00:00
- Theorem 7.1.7:
2024-10-17 19:15:19 +00:00
- IF: $X$ is an $n$ type
- THEN: it is also an $(n + 1)$ type
2024-10-17 19:11:30 +00:00
- Theorem 7.1.8:
2024-10-17 19:15:19 +00:00
- IF: $A$ is an $n$ type
- IF: $B(a)$ is an $n$ type for all $a : A$
- THEN: $\sum_{(x : A)} B(x)$ is an $n$ type
2024-10-17 19:11:30 +00:00
## -2: Contractible
## -1: Mere props
- If $A$ and $B$ are mere props, so is $A \times B$
- If $B(a)$ is a prop for any $a:A$, then $\prod_{(x:A)} B(x)$ is a prop
-