wip
This commit is contained in:
parent
4899cda158
commit
f146d0c6ab
5 changed files with 51 additions and 2 deletions
27
notes/HLevels.md
Normal file
27
notes/HLevels.md
Normal file
|
@ -0,0 +1,27 @@
|
|||
# Properties
|
||||
|
||||
- Theorem 7.1.4:
|
||||
- IF: $X$ is an $n$-type
|
||||
- IF: $X \rightarrow Y$ is a retraction (has a left-inverse)
|
||||
- THEN: $Y$ is an $n$-type
|
||||
- Corollary 7.1.5:
|
||||
- IF: $X \simeq Y$
|
||||
- IF: $X$ is an $n$-type
|
||||
- THEN: $Y$ is an $n$-type
|
||||
- Theorem 7.1.7:
|
||||
- IF: $X$ is an $n$-type
|
||||
- THEN: it is also an $(n + 1)$-type
|
||||
- Theorem 7.1.8:
|
||||
- IF: $A$ is an $n$-type
|
||||
- IF: $B(a)$ is an $n$-type for all $a : A$
|
||||
- THEN: $\sum_{(x : A)} B(x)$ is an $n$-type
|
||||
|
||||
## -2: Contractible
|
||||
|
||||
## -1: Mere props
|
||||
|
||||
- If $A$ and $B$ are mere props, so is $A \times B$
|
||||
|
||||
- If $B(a)$ is a prop for any $a:A$, then $\prod_{(x:A)} B(x)$ is a prop
|
||||
|
||||
-
|
10
src/CubicalHott/Example3-6-2.agda
Normal file
10
src/CubicalHott/Example3-6-2.agda
Normal file
|
@ -0,0 +1,10 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module CubicalHott.Example3-6-2 where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
|
||||
example : {A : Type} → {B : A → Type}
|
||||
→ ((x : A) → isProp (B x))
|
||||
→ isProp ((x : A) → B x)
|
||||
example B-x-prop x y = λ i z → B-x-prop {! !} {! !} {! !} i
|
5
src/CubicalHott/Lemma3-11-3.agda
Normal file
5
src/CubicalHott/Lemma3-11-3.agda
Normal file
|
@ -0,0 +1,5 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module CubicalHott.Lemma3-11-3 where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
|
@ -5,4 +5,11 @@ module CubicalHott.Lemma3-11-4 where
|
|||
open import Cubical.Foundations.Prelude
|
||||
|
||||
lemma : {A : Type} → isProp (isContr A)
|
||||
lemma (x , px) (y , py) i = px y i , {! !}
|
||||
lemma {A} A-contr-x @ (x , px) (y , py) i =
|
||||
let A-is-set = isProp→isSet (isContr→isProp A-contr-x) in
|
||||
-- px y i ≡ z
|
||||
-- ———— Boundary (wanted) —————————————————————————————————————
|
||||
-- i = i0 ⊢ px z
|
||||
-- i = i1 ⊢ py z
|
||||
px y i , λ z j → {! !}
|
||||
-- λ y' j → isProp→isSet (isContr→isProp A-contr-x) (px y i) y' {! !} {! !} j i
|
|
@ -9,6 +9,6 @@ open import Cubical.Data.Nat
|
|||
z = isContr
|
||||
|
||||
theorem : {X : Type} → (n : ℕ) → isProp (isOfHLevel n X)
|
||||
theorem zero x y i = snd x (fst y) i , let z = snd x (fst y) i in λ y' j → {! !}
|
||||
theorem zero x y i = snd x (fst y) i , {! !}
|
||||
theorem (suc zero) x y = {! !}
|
||||
theorem (suc (suc n)) x y = {! !}
|
Loading…
Reference in a new issue