This commit is contained in:
Michael Zhang 2024-10-17 14:11:30 -05:00
parent 4899cda158
commit f146d0c6ab
5 changed files with 51 additions and 2 deletions

27
notes/HLevels.md Normal file
View file

@ -0,0 +1,27 @@
# Properties
- Theorem 7.1.4:
- IF: $X$ is an $n$-type
- IF: $X \rightarrow Y$ is a retraction (has a left-inverse)
- THEN: $Y$ is an $n$-type
- Corollary 7.1.5:
- IF: $X \simeq Y$
- IF: $X$ is an $n$-type
- THEN: $Y$ is an $n$-type
- Theorem 7.1.7:
- IF: $X$ is an $n$-type
- THEN: it is also an $(n + 1)$-type
- Theorem 7.1.8:
- IF: $A$ is an $n$-type
- IF: $B(a)$ is an $n$-type for all $a : A$
- THEN: $\sum_{(x : A)} B(x)$ is an $n$-type
## -2: Contractible
## -1: Mere props
- If $A$ and $B$ are mere props, so is $A \times B$
- If $B(a)$ is a prop for any $a:A$, then $\prod_{(x:A)} B(x)$ is a prop
-

View file

@ -0,0 +1,10 @@
{-# OPTIONS --cubical #-}
module CubicalHott.Example3-6-2 where
open import Cubical.Foundations.Prelude
example : {A : Type} {B : A Type}
((x : A) isProp (B x))
isProp ((x : A) B x)
example B-x-prop x y = λ i z B-x-prop {! !} {! !} {! !} i

View file

@ -0,0 +1,5 @@
{-# OPTIONS --cubical #-}
module CubicalHott.Lemma3-11-3 where
open import Cubical.Foundations.Prelude

View file

@ -5,4 +5,11 @@ module CubicalHott.Lemma3-11-4 where
open import Cubical.Foundations.Prelude
lemma : {A : Type} isProp (isContr A)
lemma (x , px) (y , py) i = px y i , {! !}
lemma {A} A-contr-x @ (x , px) (y , py) i =
let A-is-set = isProp→isSet (isContr→isProp A-contr-x) in
-- px y i ≡ z
-- ———— Boundary (wanted) —————————————————————————————————————
-- i = i0 ⊢ px z
-- i = i1 ⊢ py z
px y i , λ z j {! !}
-- λ y' j → isProp→isSet (isContr→isProp A-contr-x) (px y i) y' {! !} {! !} j i

View file

@ -9,6 +9,6 @@ open import Cubical.Data.Nat
z = isContr
theorem : {X : Type} (n : ) isProp (isOfHLevel n X)
theorem zero x y i = snd x (fst y) i , let z = snd x (fst y) i in λ y' j {! !}
theorem zero x y i = snd x (fst y) i , {! !}
theorem (suc zero) x y = {! !}
theorem (suc (suc n)) x y = {! !}