type-theory/notes/HLevels.md
2024-10-17 14:13:57 -05:00

636 B

Properties

  • Theorem 7.1.4:
    • IF: X is an $n$-type
    • IF: X \rightarrow Y is a retraction (has a left-inverse)
    • THEN: Y is an $n$-type
  • Corollary 7.1.5:
    • IF: X \simeq Y
    • IF: X is an $n$-type
    • THEN: Y is an $n$-type
  • Theorem 7.1.7:
    • IF: X is an $n$-type
    • THEN: it is also an $(n + 1)$-type
  • Theorem 7.1.8:
    • IF: A is an $n$-type
    • IF: B(a) is an $n$-type for all a : A
    • THEN: \sum_{(x : A)} B(x) is an $n$-type

-2: Contractible

-1: Mere props

  • If A and B are mere props, so is A \times B

  • If B(a) is a prop for any a:A, then \prod_{(x:A)} B(x) is a prop