fix incorrect types
This commit is contained in:
parent
55611cdb30
commit
009304a28d
1 changed files with 22 additions and 15 deletions
|
@ -281,19 +281,6 @@
|
|||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Homotopy type theory proof idea}
|
||||
|
||||
\begin{itemize}
|
||||
\item For $g : \mathbb{Z} \rightarrow \pi_1(S^1)$, we can just add $\mathsf{loop}$s to $\mathsf{refl}$ inductively
|
||||
\begin{itemize}
|
||||
\item $g(-1 + n) = \mathsf{loop}^{-1} \cdot g(n)$
|
||||
\item $g(0) = \mathsf{refl}$
|
||||
\item $g(n + 1) = g(n) \cdot \mathsf{loop}$
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Homotopy type theory proof idea}
|
||||
|
||||
|
@ -304,11 +291,31 @@
|
|||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Homotopy type theory proof idea}
|
||||
|
||||
\begin{itemize}
|
||||
\item For $g : \mathsf{code}(c) \rightarrow \mathsf{base} \equiv_{S^1} c$,
|
||||
we can iteratively compose $\mathsf{loop}$s to $\mathsf{refl}$ using a function $loop^n$
|
||||
\begin{itemize}
|
||||
\item $loop^{-1 + n} = loop^n \cdot \mathsf{loop}^{-1}$
|
||||
\item $loop^0 = \mathsf{refl}$
|
||||
\item $loop^{n + 1} = loop^n \cdot \mathsf{loop}$
|
||||
\end{itemize}
|
||||
|
||||
\item Then, use this to define $g$
|
||||
\begin{itemize}
|
||||
\item $g(c : \mathsf{code}(\mathsf{base})) = loop^c$
|
||||
\item $g(c : \mathsf{code}(\mathsf{loop})) : loop^c \equiv loop^c$
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Homotopy type theory proof}
|
||||
|
||||
\begin{itemize}
|
||||
\item The homotopies $g \circ f \equiv_{\pi_1(S^1)} \mathsf{id}$ and $f \circ g \equiv_{\mathbb{N}} \mathsf{id}$ can be proven just by applying groupoid laws of paths:
|
||||
\item The homotopies $(g \circ f \equiv \mathsf{id}_{(\mathsf{base} \equiv_{S^1} c)})$ and $(f \circ g \equiv \mathsf{id}_{\mathsf{code}(c)})$ can be proven just by applying groupoid laws of paths:
|
||||
\begin{itemize}
|
||||
\item Identity: $(p : x \equiv_A y) \rightarrow p \cdot \mathsf{refl} \equiv p$
|
||||
\item Identity: $(p : x \equiv_A y) \rightarrow \mathsf{refl} \cdot p \equiv p$
|
||||
|
@ -320,7 +327,7 @@
|
|||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Defining $\mathsf{decode}$ with cubes}
|
||||
\frametitle{Defining $g$ with cubes}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
|
|
Loading…
Reference in a new issue