sequence
This commit is contained in:
parent
b7cba30de2
commit
08e5fb92b1
2 changed files with 94 additions and 21 deletions
|
@ -6,6 +6,7 @@ open import Cubical.Foundations.Prelude
|
|||
open import Cubical.Foundations.Pointed
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.Function
|
||||
open import Cubical.Foundations.Univalence
|
||||
open import Cubical.HITs.TypeQuotients
|
||||
open import Cubical.Foundations.Structure
|
||||
open import Cubical.Data.Sigma
|
||||
|
@ -51,16 +52,23 @@ Fiber {A = A , a} {B = B , b} (f , feq) = (fiber f b) , a , feq
|
|||
|
||||
-- Lemma 4.1.5 in FVD thesis
|
||||
-- Suppose given a pointed map f : A →∗ B
|
||||
module _ {A B : Pointed ℓ} (f : A →∙ B) where
|
||||
module _ {A∙ @ (A , a) B∙ @ (B , b) : Pointed ℓ} (f∙ @ (f , f-eq) : A∙ →∙ B∙) where
|
||||
private
|
||||
-- Let p1 : fib_f →∗ A be the first projection.
|
||||
p₁ : Fiber f →∙ A
|
||||
p₁ : Fiber f∙ →∙ A∙
|
||||
p₁ = fst , refl
|
||||
|
||||
lol : (f∙ .fst a ≡ b) , f-eq ≃∙ (b ≡ b) , (λ i → b)
|
||||
lol .fst = pathToEquiv (cong (λ z → z ≡ b) f-eq)
|
||||
lol .snd i j = {! !}
|
||||
|
||||
-- Then there is a pointed natural equivalence e_f
|
||||
lemmaEqv : Fiber p₁ ≃∙ Ω B
|
||||
lemmaEqv .fst = {! !}
|
||||
lemmaEqv .snd = {! !}
|
||||
lemmaEqv∙ : Fiber p₁ ≃∙ Ω B∙
|
||||
lemmaEqv∙ =
|
||||
Fiber p₁ ≃∙⟨ {! !} ⟩
|
||||
(f a ≡ b) , f-eq ≃∙⟨ {! !} ⟩
|
||||
Ω B∙ ∎≃∙
|
||||
-- lemmaEqv∙ .snd = {! !}
|
||||
|
||||
module πLES {X Y : Pointed ℓ} (f : X →∙ Y) where
|
||||
private
|
||||
|
@ -81,20 +89,31 @@ module πLES {X Y : Pointed ℓ} (f : X →∙ Y) where
|
|||
module Step1 where
|
||||
arrow* = Σ (Pointed ℓ) λ X → Σ (Pointed ℓ) λ Y → X →∙ Y
|
||||
|
||||
private
|
||||
F' : arrow* → arrow*
|
||||
F' (X , Y , f) = Fiber f , X , fst , refl
|
||||
F' : arrow* → arrow*
|
||||
F' (X , Y , f) = Fiber f , X , fst , refl
|
||||
|
||||
F'^ : (n : ℕ) → arrow* → arrow*
|
||||
F'^ zero a = a
|
||||
F'^ (suc n) a = F' (F'^ n a)
|
||||
F'^ : (n : ℕ) → arrow* → arrow*
|
||||
F'^ zero a = a
|
||||
F'^ (suc n) a = F' (F'^ n a)
|
||||
|
||||
-- Given a pointed map f : X →∗ Y, we define its fiber sequence
|
||||
ASeq : ℕ → Pointed ℓ
|
||||
ASeq n = (F'^ n (X , Y , f)) .snd .fst
|
||||
-- Given a pointed map f : X →∗ Y, we define its fiber sequence
|
||||
ASeq : ℕ → Pointed ℓ
|
||||
ASeq n = (F'^ n (X , Y , f)) .snd .fst
|
||||
|
||||
fSeq : (n : ℕ) → (ASeq (suc n) →∙ ASeq n)
|
||||
fSeq n = (F'^ n (X , Y , f)) .snd .snd
|
||||
_ : ASeq 0 ≡ Y
|
||||
_ = refl
|
||||
|
||||
_ : ASeq 1 ≡ X
|
||||
_ = refl
|
||||
|
||||
_ : ASeq 2 ≡ F
|
||||
_ = refl
|
||||
|
||||
_ : ASeq 3 ≡ Fiber (fst , {! refl !})
|
||||
_ = refl
|
||||
|
||||
fSeq : (n : ℕ) → (ASeq (suc n) →∙ ASeq n)
|
||||
fSeq n = (F'^ n (X , Y , f)) .snd .snd
|
||||
|
||||
module _ where
|
||||
open ExactSequence∙
|
||||
|
@ -136,13 +155,38 @@ module πLES {X Y : Pointed ℓ} (f : X →∙ Y) where
|
|||
cong (fSeq n .fst) (sym (p .snd)) ∙ p .fst .snd
|
||||
|
||||
-- δ : ΩY → F
|
||||
-- This is the diagonal arrow
|
||||
δ : Ω Y →∙ F
|
||||
δ = {! !} ∘∙ {! e⁻¹ .fst !} where
|
||||
e = lemmaEqv f
|
||||
e⁻¹ = invEquiv∙ e
|
||||
δ = p₁′ ∘∙ ≃∙map (invEquiv∙ e) where
|
||||
e : ASeq 3 ≃∙ Ω Y
|
||||
e = lemmaEqv∙ f
|
||||
|
||||
p₁′ : ASeq 3 →∙ F
|
||||
p₁′ = fst , refl
|
||||
|
||||
open Step1 using (δ)
|
||||
|
||||
module Step2 where
|
||||
BSeq : ℕ → Pointed ℓ
|
||||
BSeq 0 = Y
|
||||
BSeq 1 = X
|
||||
BSeq 2 = Fiber f
|
||||
BSeq (suc (suc (suc n))) = Ω (BSeq (suc (suc n)))
|
||||
|
||||
_ : Step1.ASeq 3 ≡ BSeq 3
|
||||
_ = {! refl !}
|
||||
|
||||
gSeq : (n : ℕ) → BSeq (suc n) →∙ BSeq n
|
||||
gSeq 0 = f
|
||||
gSeq 1 = p₁
|
||||
gSeq 2 = {! δ !}
|
||||
gSeq (suc (suc (suc n))) = {! !}
|
||||
|
||||
diagHom : (n : ℕ) → GroupHom (πGr (suc n) Y) (πGr n F)
|
||||
diagHom n = {! δ .fst !} , {! !}
|
||||
|
||||
πSeqHom : (n : NFin3) → GroupHom (πSeq (sucNFin3 n)) (πSeq n)
|
||||
πSeqHom (n , 0 , p) = πHom n f
|
||||
πSeqHom (n , 1 , p) = πHom n p₁
|
||||
πSeqHom (n , 2 , p) = {! πHom !}
|
||||
πSeqHom (n , suc (suc (suc k)) , p) = ⊥-rec (¬m+n<m p)
|
||||
πSeqHom (n , 2 , p) = diagHom n
|
||||
πSeqHom (n , suc (suc (suc k)) , p) = ⊥-rec (¬m+n<m p)
|
29
src/ThesisWork/Sequence.agda
Normal file
29
src/ThesisWork/Sequence.agda
Normal file
|
@ -0,0 +1,29 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
-- Trying to do a generic sequence structure?
|
||||
|
||||
module ThesisWork.Sequence where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.Pointed
|
||||
open import Cubical.Structures.Successor
|
||||
|
||||
private
|
||||
variable
|
||||
ℓ ℓ' ℓ'' : Level
|
||||
|
||||
module _ {ℓN : Level} (N : SuccStr ℓN) where
|
||||
open SuccStr N
|
||||
|
||||
Sequence : ∀ {ℓ : Level} → (A : Index → Type ℓ) → Type (ℓ-max ℓ ℓN)
|
||||
Sequence A = (n : Index) → A n
|
||||
|
||||
record IsChainComplex {ℓS N : Level}
|
||||
(S : Sequence (λ _ → Pointed ℓS))
|
||||
(F : Sequence (λ n → S (succ n) →∙ S n))
|
||||
: Type (ℓ-max ℓN ℓS) where
|
||||
field
|
||||
property : (n : Index) →
|
||||
let Tₙ₊₂ = S (succ (succ n)) in let Tₙ₊₁ = S (succ n) in let Tₙ = S n in
|
||||
let dₙ₊₁ = F (succ n) in let dₙ = F n in
|
||||
(dₙ ∘∙ dₙ₊₁) ≡ const∙ Tₙ₊₂ Tₙ
|
Loading…
Reference in a new issue