proved theorem 7.1.10, closes #34

This commit is contained in:
Michael Zhang 2024-10-20 03:06:06 -05:00
parent 607d75a99a
commit 136d9f67c3

View file

@ -6,9 +6,11 @@ open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Nat
z = isContr
open import CubicalHott.Lemma3-11-4 renaming (lemma to lemma3-11-4)
theorem : {X : Type} (n : ) isProp (isOfHLevel n X)
theorem zero = {! !}
theorem (suc zero) x y = {! !}
theorem (suc (suc n)) x y = {! !}
theorem zero = lemma3-11-4
theorem (suc zero) isProp1 isProp2 i x y j = isProp→isSet isProp1 x y (isProp1 x y) (isProp2 x y) i j
theorem {X = X} (suc (suc n)) isHLevel1 isHLevel2 =
let IH = λ (x y : X) theorem {X = x y} (suc n) in
funExt (λ x funExt (λ y IH x y (isHLevel1 x y) (isHLevel2 x y)))