This commit is contained in:
Michael Zhang 2024-12-02 05:53:09 -06:00
parent 101cbab14e
commit 16df789f5f

View file

@ -3,10 +3,14 @@
module ThesisWork.EMSpace where
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Data.Nat
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Pointed
@ -15,7 +19,8 @@ open import Cubical.Foundations.Structure
open import Cubical.Homotopy.Loopspace
open import Cubical.Homotopy.Group.Base
open import Cubical.HITs.SetTruncation as ST hiding (rec)
open import Cubical.HITs.Truncation as T hiding (rec)
open import Cubical.HITs.GroupoidTruncation as GT hiding (rec)
open import Cubical.HITs.Truncation
variable
' : Level
@ -27,16 +32,61 @@ data K1 { : Level} (G : Group ) : Type where
loop-∙ : (x y : G ) loop (str G .GroupStr._·_ x y) loop y loop x
K[_,1] : (G : Group ) Type
K[ G ,1] = K1 G 3
K[ G ,1] = K1 G
-------------------------------------------------------------------------------
-- Properties
-- ΩK(G,1) ≃ G
π₁KG1≃G : (G : Group ) GroupIso (πGr 0 (K[ G ,1] , base )) G
π₁KG1≃G G = {! !} , {! !} where
module _ (G : Group ) where
open GroupStr (G .snd)
K[G,1] = K[ G ,1]
K[G,1]∙ : Pointed
K[G,1]∙ = K[G,1] , base ∣₃
ΩK[G,1] = Ω K[G,1]∙
π1K[G,1] = π 1 K[G,1]∙
-- Since K[G, 1] is a 1-type, then all loops in K[G, 1] are identical
lemma1 : isOfHLevel 3 K[ G ,1]
lemma1 = {! !}
lemma2 : isOfHLevel 2 ΩK[G,1]
lemma2 x y p q i j k = {! !}
Codes : K[G,1] hSet
Codes = GT.rec isGroupoidHSet Codes' where
CodesFunc : G G G
CodesFunc g = {! g !}
Codes' : K1 G hSet
Codes' base = G , is-set
Codes' (loop x i) = G , is-set
Codes' (loop-1g i i₁) = {! !}
Codes' (loop-∙ x y i i₁) = {! !}
encode : (z : K[G,1]) base ∣₃ z Codes z
encode z p = {! !}
decode : G base base
decode = loop
ΩKG1≃G' : GroupIso {! ΩK[G,1] !} G
ΩKG1≃G : ΩK[G,1] G
ΩKG1≃G = isoToEquiv (iso f {! !} {! !} {! !}) where
f : ΩK[G,1] G
f p = {! !}
ΩKG1-idem-trunc : π 1 (K[ G ,1] , base ∣₃) ΩK[G,1]
ΩKG1-idem-trunc = isoToEquiv (setTruncIdempotentIso lemma2)
π₁KG1≃G : πGr 0 (K[ G ,1] , base ∣₃) G
π₁KG1≃G = compEquiv ΩKG1-idem-trunc ΩKG1≃G
-- Uniqueness
module _ (n : ) (X Y : Pointed ) where