emspace
This commit is contained in:
parent
101cbab14e
commit
16df789f5f
1 changed files with 55 additions and 5 deletions
|
@ -3,10 +3,14 @@
|
|||
module ThesisWork.EMSpace where
|
||||
|
||||
open import Cubical.Algebra.Group
|
||||
open import Cubical.Algebra.Group.Base
|
||||
open import Cubical.Algebra.Monoid
|
||||
open import Cubical.Algebra.Semigroup
|
||||
open import Cubical.Algebra.Group.Morphisms
|
||||
open import Cubical.Data.Nat
|
||||
open import Cubical.Foundations.Function
|
||||
open import Cubical.Foundations.HLevels
|
||||
open import Cubical.Foundations.GroupoidLaws
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.Isomorphism
|
||||
open import Cubical.Foundations.Pointed
|
||||
|
@ -15,7 +19,8 @@ open import Cubical.Foundations.Structure
|
|||
open import Cubical.Homotopy.Loopspace
|
||||
open import Cubical.Homotopy.Group.Base
|
||||
open import Cubical.HITs.SetTruncation as ST hiding (rec)
|
||||
open import Cubical.HITs.Truncation as T hiding (rec)
|
||||
open import Cubical.HITs.GroupoidTruncation as GT hiding (rec)
|
||||
open import Cubical.HITs.Truncation
|
||||
|
||||
variable
|
||||
ℓ ℓ' : Level
|
||||
|
@ -27,16 +32,61 @@ data K1 {ℓ : Level} (G : Group ℓ) : Type ℓ where
|
|||
loop-∙ : (x y : ⟨ G ⟩) → loop (str G .GroupStr._·_ x y) ≡ loop y ∙ loop x
|
||||
|
||||
K[_,1] : (G : Group ℓ) → Type ℓ
|
||||
K[ G ,1] = ∥ K1 G ∥ 3
|
||||
K[ G ,1] = ∥ K1 G ∥₃
|
||||
|
||||
-------------------------------------------------------------------------------
|
||||
-- Properties
|
||||
|
||||
-- ΩK(G,1) ≃ G
|
||||
|
||||
π₁KG1≃G : (G : Group ℓ) → GroupIso (πGr 0 (K[ G ,1] , ∣ base ∣)) G
|
||||
π₁KG1≃G G = {! !} , {! !} where
|
||||
module _ (G : Group ℓ) where
|
||||
open GroupStr (G .snd)
|
||||
|
||||
K[G,1] = K[ G ,1]
|
||||
|
||||
K[G,1]∙ : Pointed ℓ
|
||||
K[G,1]∙ = K[G,1] , ∣ base ∣₃
|
||||
|
||||
ΩK[G,1] = Ω K[G,1]∙
|
||||
π1K[G,1] = π 1 K[G,1]∙
|
||||
|
||||
-- Since K[G, 1] is a 1-type, then all loops in K[G, 1] are identical
|
||||
lemma1 : isOfHLevel 3 K[ G ,1]
|
||||
lemma1 = {! !}
|
||||
|
||||
lemma2 : isOfHLevel 2 ⟨ ΩK[G,1] ⟩
|
||||
lemma2 x y p q i j k = {! !}
|
||||
|
||||
Codes : K[G,1] → hSet ℓ
|
||||
Codes = GT.rec isGroupoidHSet Codes' where
|
||||
CodesFunc : ⟨ G ⟩ → ⟨ G ⟩ ≡ ⟨ G ⟩
|
||||
CodesFunc g = {! g !}
|
||||
|
||||
Codes' : K1 G → hSet ℓ
|
||||
Codes' base = ⟨ G ⟩ , is-set
|
||||
Codes' (loop x i) = ⟨ G ⟩ , is-set
|
||||
Codes' (loop-1g i i₁) = {! !}
|
||||
Codes' (loop-∙ x y i i₁) = {! !}
|
||||
|
||||
encode : (z : K[G,1]) → ∣ base ∣₃ ≡ z → ⟨ Codes z ⟩
|
||||
encode z p = {! !}
|
||||
|
||||
decode : ⟨ G ⟩ → base ≡ base
|
||||
decode = loop
|
||||
|
||||
ΩKG1≃G' : GroupIso {! ΩK[G,1] !} G
|
||||
|
||||
ΩKG1≃G : ⟨ ΩK[G,1] ⟩ ≃ ⟨ G ⟩
|
||||
ΩKG1≃G = isoToEquiv (iso f {! !} {! !} {! !}) where
|
||||
f : ⟨ ΩK[G,1] ⟩ → ⟨ G ⟩
|
||||
f p = {! !}
|
||||
|
||||
ΩKG1-idem-trunc : π 1 (K[ G ,1] , ∣ base ∣₃) ≃ ⟨ ΩK[G,1] ⟩
|
||||
ΩKG1-idem-trunc = isoToEquiv (setTruncIdempotentIso lemma2)
|
||||
|
||||
π₁KG1≃G : ⟨ πGr 0 (K[ G ,1] , ∣ base ∣₃) ⟩ ≃ ⟨ G ⟩
|
||||
π₁KG1≃G = compEquiv ΩKG1-idem-trunc ΩKG1≃G
|
||||
|
||||
-- Uniqueness
|
||||
|
||||
|
||||
module _ (n : ℕ) (X Y : Pointed ℓ) where
|
Loading…
Reference in a new issue