This commit is contained in:
Michael Zhang 2024-11-03 00:48:30 -05:00
parent 173e6d4bbf
commit 38b152a9a4
2 changed files with 18 additions and 44 deletions

View file

@ -18,41 +18,6 @@ private
variable
' : Level
-- kernel : {l : Level} → {A B : Pointed l} → (f : A →∙ B) → Type l
-- kernel {l} {A = A @ A , a} {B = B @ B , b} (f , f-eq) =
-- -- all elements of A that map to the base point b of B
-- Σ A λ a → f a ≡ b
-- image : {l : Level} → {A B : Pointed l} → (f : A →∙ B) → Type l
-- image {l} {A = A @ A , a} {B = B @ B , b} (f , f-eq) =
-- -- all elements of B such that
-- Σ B (λ b →
-- -- there exists some A such that f(a) is b
-- Σ A λ a → f a ≡ b
-- )
-- module _ (C : Category ') where
-- open Category C
-- module _ {x y : ob} where
-- record IsImage {i : ob} (f : Hom[ x , y ]) (m : Hom[ i , y ]) : Type (-max ') where
-- field
-- e : Hom[ x , i ]
-- req1 : f ≡ (_⋆_ e m)
-- req2 : (i' : ob) → (e' : Hom[ x , i' ]) → (m' : Hom[ i' , y ]) → f ≡ (_⋆_ e' m')
-- → ∃![ v ∈ Hom[ i , i' ] ] (m ≡ (_⋆_ v m'))
-- record Image (f : Hom[ x , y ]) : Type (-max ') where
-- field
-- i : ob
-- m : Hom[ i , y ]
-- isIm : IsImage f m
-- im : ∀ {x y : ob} → (f : Hom[ x , y ]) → Image f
-- im {x} {y} f = record { i = {! !} ; m = {! !} ; isIm = {! !} }
module fiveLemma (AC : AbelianCategory ') where
open AbelianCategory AC

View file

@ -6,14 +6,15 @@ open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Data.Unit
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.GroupPath
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Instances.Unit
open import Cubical.HITs.PropositionalTruncation.Properties renaming (rec to propTruncRec)
private
variable
@ -29,9 +30,9 @@ module _
(h : GroupHom C D)
(j : GroupHom D E)
(l : GroupHom A A')
(m : GroupHom B B')
(m : BijectionIso B B')
(n : GroupHom C C')
(p : GroupHom D D')
(p : BijectionIso D D')
(q : GroupHom E E')
(r : GroupHom A' B')
(s : GroupHom B' C')
@ -44,17 +45,25 @@ module _
(st : isExact s t)
(tu : isExact t u)
(lEpi : isSurjective l)
(mIso : isIso (m .fst))
(pIso : isIso (p .fst))
(q : isMono p)
(q : isMono q)
where
open BijectionIso
sur : isSurjective n
sur c' =
let pSurj = p .surj in
let t[c'] = t .fst c' in
let step1 = pSurj t[c'] in
let d-thing = snd D in
let d-is-group = isPropIsGroup {! !} {! !} {! !} in
let step2 = propTruncRec {! !} (λ x fst x) step1 in
{! !}
mono : isMono n
mono x = {! !}
lemma : isIso (n .fst)
lemma = gg , {! !} , {! !} where
gg : C' .fst C .fst
gg = {! !}
gg c' = {! !}