wip
This commit is contained in:
parent
173e6d4bbf
commit
38b152a9a4
2 changed files with 18 additions and 44 deletions
|
@ -18,41 +18,6 @@ private
|
|||
variable
|
||||
ℓ ℓ' : Level
|
||||
|
||||
-- kernel : {l : Level} → {A B : Pointed l} → (f : A →∙ B) → Type l
|
||||
-- kernel {l} {A = A @ A , a} {B = B @ B , b} (f , f-eq) =
|
||||
-- -- all elements of A that map to the base point b of B
|
||||
-- Σ A λ a → f a ≡ b
|
||||
|
||||
-- image : {l : Level} → {A B : Pointed l} → (f : A →∙ B) → Type l
|
||||
-- image {l} {A = A @ A , a} {B = B @ B , b} (f , f-eq) =
|
||||
-- -- all elements of B such that
|
||||
-- Σ B (λ b →
|
||||
-- -- there exists some A such that f(a) is b
|
||||
-- Σ A λ a → f a ≡ b
|
||||
-- )
|
||||
|
||||
-- module _ (C : Category ℓ ℓ') where
|
||||
-- open Category C
|
||||
|
||||
-- module _ {x y : ob} where
|
||||
|
||||
-- record IsImage {i : ob} (f : Hom[ x , y ]) (m : Hom[ i , y ]) : Type (ℓ-max ℓ ℓ') where
|
||||
-- field
|
||||
-- e : Hom[ x , i ]
|
||||
-- req1 : f ≡ (_⋆_ e m)
|
||||
-- req2 : (i' : ob) → (e' : Hom[ x , i' ]) → (m' : Hom[ i' , y ]) → f ≡ (_⋆_ e' m')
|
||||
-- → ∃![ v ∈ Hom[ i , i' ] ] (m ≡ (_⋆_ v m'))
|
||||
|
||||
|
||||
-- record Image (f : Hom[ x , y ]) : Type (ℓ-max ℓ ℓ') where
|
||||
-- field
|
||||
-- i : ob
|
||||
-- m : Hom[ i , y ]
|
||||
-- isIm : IsImage f m
|
||||
|
||||
-- im : ∀ {x y : ob} → (f : Hom[ x , y ]) → Image f
|
||||
-- im {x} {y} f = record { i = {! !} ; m = {! !} ; isIm = {! !} }
|
||||
|
||||
module fiveLemma (AC : AbelianCategory ℓ ℓ') where
|
||||
open AbelianCategory AC
|
||||
|
||||
|
|
|
@ -6,14 +6,15 @@ open import Cubical.Foundations.Prelude
|
|||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.Function
|
||||
open import Cubical.Foundations.Isomorphism
|
||||
|
||||
open import Cubical.Foundations.Structure
|
||||
open import Cubical.Data.Unit
|
||||
|
||||
open import Cubical.Algebra.Group.Base
|
||||
open import Cubical.Algebra.Group.Morphisms
|
||||
open import Cubical.Algebra.Group.MorphismProperties
|
||||
open import Cubical.Algebra.Group.GroupPath
|
||||
open import Cubical.Algebra.Group.Properties
|
||||
open import Cubical.Algebra.Group.Instances.Unit
|
||||
open import Cubical.HITs.PropositionalTruncation.Properties renaming (rec to propTruncRec)
|
||||
|
||||
private
|
||||
variable
|
||||
|
@ -29,9 +30,9 @@ module _
|
|||
(h : GroupHom C D)
|
||||
(j : GroupHom D E)
|
||||
(l : GroupHom A A')
|
||||
(m : GroupHom B B')
|
||||
(m : BijectionIso B B')
|
||||
(n : GroupHom C C')
|
||||
(p : GroupHom D D')
|
||||
(p : BijectionIso D D')
|
||||
(q : GroupHom E E')
|
||||
(r : GroupHom A' B')
|
||||
(s : GroupHom B' C')
|
||||
|
@ -44,17 +45,25 @@ module _
|
|||
(st : isExact s t)
|
||||
(tu : isExact t u)
|
||||
(lEpi : isSurjective l)
|
||||
(mIso : isIso (m .fst))
|
||||
(pIso : isIso (p .fst))
|
||||
(q : isMono p)
|
||||
(q : isMono q)
|
||||
where
|
||||
open BijectionIso
|
||||
|
||||
sur : isSurjective n
|
||||
sur c' =
|
||||
let pSurj = p .surj in
|
||||
let t[c'] = t .fst c' in
|
||||
let step1 = pSurj t[c'] in
|
||||
let d-thing = snd D in
|
||||
let d-is-group = isPropIsGroup {! !} {! !} {! !} in
|
||||
let step2 = propTruncRec {! !} (λ x → fst x) step1 in
|
||||
{! !}
|
||||
|
||||
mono : isMono n
|
||||
mono x = {! !}
|
||||
|
||||
lemma : isIso (n .fst)
|
||||
lemma = gg , {! !} , {! !} where
|
||||
gg : C' .fst → C .fst
|
||||
gg = {! !}
|
||||
|
||||
gg c' = {! !}
|
||||
|
Loading…
Reference in a new issue