3.5 subsets
This commit is contained in:
parent
c470464a1e
commit
48064f12df
1 changed files with 31 additions and 0 deletions
|
@ -329,9 +329,40 @@ module definition3∙4∙3 where
|
|||
|
||||
## 3.5 Subsets and propositional resizing
|
||||
|
||||
### Lemma 3.5.1
|
||||
|
||||
```
|
||||
lemma3∙5∙1 : {A : Set} {P : A → Set}
|
||||
→ ((x : A) → isProp (P x))
|
||||
→ (u v : Σ A P)
|
||||
→ (Σ.fst u ≡ Σ.fst v)
|
||||
→ u ≡ v
|
||||
lemma3∙5∙1 {P = P} f u v p =
|
||||
let
|
||||
eqv = theorem2∙7∙2 u v
|
||||
func = Σ.fst (lemma2∙4∙12.sym-equiv eqv)
|
||||
prf = p , f (Σ.fst v) (transport P p (Σ.snd u)) (Σ.snd v)
|
||||
in func prf
|
||||
```
|
||||
|
||||
```
|
||||
SubProp : (l : Level) → Set (lsuc l)
|
||||
SubProp l = Σ (Set l) isProp
|
||||
```
|
||||
|
||||
```
|
||||
equation3∙5∙4 : {l : Level} → SubProp l → SubProp (lsuc l)
|
||||
equation3∙5∙4 {l} (A , Aprop) = Lift A , λ x y → ap lift (Aprop (Lift.lower x) (Lift.lower y))
|
||||
```
|
||||
|
||||
### Axiom 3.5.5
|
||||
|
||||
Not able to be proved, but is consistent
|
||||
|
||||
```
|
||||
postulate
|
||||
propResizingEquiv : {l : Level} → isequiv (equation3∙5∙4 {l})
|
||||
```
|
||||
|
||||
## 3.6 The logic of mere propositions
|
||||
|
||||
|
|
Loading…
Reference in a new issue