3.5 subsets

This commit is contained in:
Michael Zhang 2024-07-11 11:21:17 -05:00
parent c470464a1e
commit 48064f12df

View file

@ -329,9 +329,40 @@ module definition3∙4∙3 where
## 3.5 Subsets and propositional resizing
### Lemma 3.5.1
```
lemma3∙5∙1 : {A : Set} {P : A → Set}
→ ((x : A) → isProp (P x))
→ (u v : Σ A P)
→ (Σ.fst u ≡ Σ.fst v)
→ u ≡ v
lemma3∙5∙1 {P = P} f u v p =
let
eqv = theorem2∙7∙2 u v
func = Σ.fst (lemma2∙4∙12.sym-equiv eqv)
prf = p , f (Σ.fst v) (transport P p (Σ.snd u)) (Σ.snd v)
in func prf
```
```
SubProp : (l : Level) → Set (lsuc l)
SubProp l = Σ (Set l) isProp
```
```
equation3∙5∙4 : {l : Level} → SubProp l → SubProp (lsuc l)
equation3∙5∙4 {l} (A , Aprop) = Lift A , λ x y → ap lift (Aprop (Lift.lower x) (Lift.lower y))
```
### Axiom 3.5.5
Not able to be proved, but is consistent
```
postulate
propResizingEquiv : {l : Level} → isequiv (equation3∙5∙4 {l})
```
## 3.6 The logic of mere propositions