push
This commit is contained in:
parent
9bedfd5aaa
commit
4b5cd69a66
14 changed files with 209 additions and 14 deletions
3
.editorconfig
Normal file
3
.editorconfig
Normal file
|
@ -0,0 +1,3 @@
|
|||
[*]
|
||||
indent_size = 2
|
||||
indent_style = space
|
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -1 +1,2 @@
|
|||
*.agdai
|
||||
.DS_Store
|
4
Makefile
4
Makefile
|
@ -1,7 +1,7 @@
|
|||
GENDIR := html/src/generated
|
||||
|
||||
build-to-html:
|
||||
find src/HottBook \( -name "*.agda" -o -name "*.lagda.md" \) -print0 \
|
||||
find src \( -name "*.agda" -o -name "*.lagda.md" \) -print0 \
|
||||
| rust-parallel -0 agda \
|
||||
--html \
|
||||
--html-dir=$(GENDIR) \
|
||||
|
@ -17,6 +17,6 @@ refresh-book: build-to-html
|
|||
mdbook serve html
|
||||
|
||||
deploy: build-book
|
||||
rsync -azrP html/book/ root@veil:/home/blogDeploy/public/hott-book
|
||||
rsync -azrP html/book/ root@veil:/home/blogDeploy/public/research
|
||||
|
||||
.PHONY: build-book build-to-html deploy
|
|
@ -13,12 +13,16 @@ macros = "./macros.txt"
|
|||
[preprocessor.chapter-zero]
|
||||
levels = [0]
|
||||
|
||||
[preprocessor.graphviz]
|
||||
command = "mdbook-graphviz"
|
||||
output-to-file = false
|
||||
|
||||
[output.html]
|
||||
additional-js = [
|
||||
# "theme/pagetoc.js"
|
||||
# "theme/pagetoc.js"
|
||||
]
|
||||
additional-css = [
|
||||
"Agda.css",
|
||||
"style.css",
|
||||
# "theme/pagetoc.css"
|
||||
"Agda.css",
|
||||
"style.css",
|
||||
# "theme/pagetoc.css"
|
||||
]
|
||||
|
|
|
@ -1,6 +1,9 @@
|
|||
# Summary
|
||||
|
||||
- [Front](./front.md)
|
||||
|
||||
# HoTT Book
|
||||
|
||||
- [Chapter 1](./generated/HottBook.Chapter1.md)
|
||||
- [Exercises](./generated/HottBook.Chapter1Exercises.md)
|
||||
- [Chapter 2](./generated/HottBook.Chapter2.md)
|
||||
|
@ -16,3 +19,6 @@
|
|||
- [Definition 3.3.1](./generated/HottBook.Chapter3Definition331.md)
|
||||
- [Lemma 3.3.3](./generated/HottBook.Chapter3Lemma333.md)
|
||||
|
||||
# Van Doorn Dissertation
|
||||
|
||||
- [Preliminaries](./generated/VanDoornDissertation.Preliminaries.md)
|
|
@ -1,6 +1,24 @@
|
|||
# Homotopy Type Theory
|
||||
# Research
|
||||
|
||||
I'm recreating a formalization for the Homotopy Type Theory book as I'm working through it to help me learn.
|
||||
This book tracks my current research goals and progress.
|
||||
|
||||
- [Source](https://git.mzhang.io/school/type-theory)
|
||||
|
||||
```dot process
|
||||
digraph {
|
||||
rankdir="BT"
|
||||
|
||||
subgraph cluster_exploration {
|
||||
label = "random cloud of exploration" {
|
||||
mayconcise [label="concise course" URL="https://git.mzhang.io/school/type-theory/raw/branch/master/resources/MayConcise/ConciseRevised.pdf"]
|
||||
hott [label = "hott book" URL="https://hott.github.io/book/hott-ebook.pdf.html"]
|
||||
}
|
||||
}
|
||||
|
||||
subgraph cluster_thesis {
|
||||
label = "thesis" {
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
3
html/src/hott-front.md
Normal file
3
html/src/hott-front.md
Normal file
|
@ -0,0 +1,3 @@
|
|||
# Homotopy Type Theory
|
||||
|
||||
I'm recreating a formalization for the Homotopy Type Theory book as I'm working through it to help me learn.
|
BIN
resources/MayConcise/ConciseRevised.pdf
vendored
BIN
resources/MayConcise/ConciseRevised.pdf
vendored
Binary file not shown.
3
resources/VanDoornDissertation/.gitignore
vendored
Normal file
3
resources/VanDoornDissertation/.gitignore
vendored
Normal file
|
@ -0,0 +1,3 @@
|
|||
*.aux
|
||||
*.log
|
||||
*.toc
|
BIN
resources/VanDoornDissertation/dissertation.pdf
vendored
BIN
resources/VanDoornDissertation/dissertation.pdf
vendored
Binary file not shown.
31
resources/VanDoornDissertation/dissertation.tex
vendored
31
resources/VanDoornDissertation/dissertation.tex
vendored
|
@ -1,24 +1,41 @@
|
|||
\RequirePackage{fix-cm}
|
||||
\def\OPTpagesize{4.8in,7.9in} % Page size
|
||||
\documentclass[12pt]{report}
|
||||
\usepackage[hyphens]{url}
|
||||
\usepackage{hyperref}
|
||||
\usepackage[margin=1.2in]{geometry}
|
||||
\pdfoutput=1
|
||||
\usepackage[
|
||||
backref=page,
|
||||
colorlinks,
|
||||
citecolor=linkcolor,
|
||||
linkcolor=linkcolor,
|
||||
urlcolor=linkcolor,
|
||||
unicode,
|
||||
]{hyperref}
|
||||
\usepackage[
|
||||
papersize={\OPTpagesize},
|
||||
margin=0.4in,
|
||||
twoside,
|
||||
includehead,
|
||||
]{geometry}
|
||||
% \pdfoutput=1
|
||||
\usepackage{lmodern}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{amsmath,mathtools,amssymb,etoolbox,enumerate,xspace}
|
||||
\usepackage{amsmath,amsfonts,mathtools,amssymb,etoolbox,enumerate,xspace}
|
||||
\usepackage{microtype}
|
||||
\usepackage{ctex}
|
||||
\usepackage{caption,subcaption}
|
||||
\mathtoolsset{mathic,centercolon}
|
||||
\usepackage[numbered]{bookmark}
|
||||
|
||||
\def\OPTlinkcolor{0,0.45,0} % RGB components for clickable links
|
||||
|
||||
% footnotes numbered consecutively throughout chapters
|
||||
\usepackage{chngcntr}
|
||||
\counterwithout{footnote}{chapter}
|
||||
|
||||
%% URL
|
||||
\usepackage{xcolor}
|
||||
\definecolor{linkcolor}{rgb}{\OPTlinkcolor}
|
||||
\usepackage{cleveref}
|
||||
\hypersetup{
|
||||
colorlinks,
|
||||
|
@ -45,6 +62,8 @@
|
|||
\protected\def\tikz@nonactivecolon{\ifmmode\mathrel{\mathop\ordinarycolon}\else:\fi}
|
||||
\makeatother
|
||||
|
||||
\linespread{1.05} % Palatino looks better with this
|
||||
|
||||
|
||||
|
||||
%% Lean code
|
||||
|
@ -85,7 +104,7 @@
|
|||
%\renewcommand{\kappa}{\varkappa}
|
||||
% \renewcommand{\rho}{\varrho}
|
||||
\renewcommand{\phi}{\varphi}
|
||||
\renewcommand{\C}{\mathbb{C}}
|
||||
\newcommand{\C}{\mathbb{C}}
|
||||
|
||||
\newcommand{\br}[1]{\langle#1\rangle}
|
||||
|
||||
|
@ -172,7 +191,7 @@
|
|||
% \newcommand{\isprop}{\textnormal{is-prop}}
|
||||
% \newcommand{\prop}{\textnormal{Prop}}
|
||||
% \newcommand{\isset}{\textnormal{is-set}}
|
||||
\renewcommand{\U}{\UU}
|
||||
\newcommand{\U}{\UU}
|
||||
% \newcommand{\type}{\mathcal{U}}
|
||||
% \newcommand{\set}{\textnormal{set}}
|
||||
% \newcommand{\fa}[2]{\ensuremath{\Pi(#1),\ #2}}
|
||||
|
|
20
src/MayConcise/Chapter1.lagda.md
Normal file
20
src/MayConcise/Chapter1.lagda.md
Normal file
|
@ -0,0 +1,20 @@
|
|||
```
|
||||
{-# OPTIONS --cubical #-}
|
||||
module MayConcise.Chapter1 where
|
||||
```
|
||||
|
||||
## 1 What is algebraic topology?
|
||||
|
||||
https://en.wikipedia.org/wiki/Homomorphism
|
||||
|
||||
> A homomorphism is a map between two algebraic structures of the same type (that is of the same name), that preserves the operations of the structures. This means a map f : A → B {\displaystyle f:A\to B} between two sets A {\displaystyle A}, B {\displaystyle B} equipped with the same structure such that, if ⋅ {\displaystyle \cdot } is an operation of the structure (supposed here, for simplification, to be a binary operation), then
|
||||
>
|
||||
> ```
|
||||
> f ( x ⋅ y ) = f ( x ) ⋅ f ( y ) {\displaystyle f(x\cdot y)=f(x)\cdot f(y)}
|
||||
> ```
|
||||
>
|
||||
> for every pair x {\displaystyle x}, y {\displaystyle y} of elements of A {\displaystyle A}.
|
||||
|
||||
```
|
||||
homotopy : {X Y : Set} {p q : X → Y}
|
||||
```
|
29
src/VanDoornDissertation/HIT.lagda.md
Normal file
29
src/VanDoornDissertation/HIT.lagda.md
Normal file
|
@ -0,0 +1,29 @@
|
|||
```
|
||||
{-# OPTIONS --cubical #-}
|
||||
module VanDoornDissertation.HIT where
|
||||
|
||||
open import Data.Nat
|
||||
open import VanDoornDissertation.Preliminaries
|
||||
```
|
||||
|
||||
# 3 Higher Inductive Types
|
||||
|
||||
## 3.1 Propositional Truncation
|
||||
|
||||
```
|
||||
data one-step-truncation (A : Set) : Set where
|
||||
f : A → one-step-truncation A
|
||||
e : (x y : A) → f x ≡ f y
|
||||
|
||||
weakly-constant : {A B : Set} → (g : A → B) → Set
|
||||
weakly-constant {A} g = {x y : A} → g x ≡ g y
|
||||
|
||||
definition3∙1∙1 : {A : Set} → one-step-truncation A → ℕ → Set
|
||||
definition3∙1∙1 {A} trunc zero = A
|
||||
definition3∙1∙1 {A} trunc (suc n) = one-step-truncation (definition3∙1∙1 trunc n)
|
||||
|
||||
fs : {A : Set} → one-step-truncation A → (n : ℕ) → Set
|
||||
fs trunc n = (definition3∙1∙1 trunc n) → (definition3∙1∙1 trunc (suc n))
|
||||
|
||||
-- lemma3∙1∙3 : {X : Set} → {x : X} → is
|
||||
```
|
89
src/VanDoornDissertation/Preliminaries.lagda.md
Normal file
89
src/VanDoornDissertation/Preliminaries.lagda.md
Normal file
|
@ -0,0 +1,89 @@
|
|||
```
|
||||
{-# OPTIONS --cubical #-}
|
||||
module VanDoornDissertation.Preliminaries where
|
||||
|
||||
open import Agda.Primitive
|
||||
open import Agda.Primitive.Cubical
|
||||
```
|
||||
|
||||
### 2.2.1 Paths
|
||||
|
||||
```
|
||||
Path : {ℓ : Level} (A : Set ℓ) → A → A → Set ℓ
|
||||
Path A = PathP (λ i → A)
|
||||
|
||||
infix 4 _≡_
|
||||
_≡_ : {ℓ : Level} {A : Set ℓ} → A → A → Set ℓ
|
||||
_≡_ {A = A} = Path A
|
||||
|
||||
private
|
||||
to-path : {ℓ : Level} {A : Set ℓ} → (f : I → A) → Path A (f i0) (f i1)
|
||||
to-path f i = f i
|
||||
refl : {ℓ : Level} {A : Set ℓ} {x : A} → x ≡ x
|
||||
refl {x = x} = to-path (λ i → x)
|
||||
|
||||
id : {l : Level} {A : Set l} → A → A
|
||||
id x = x
|
||||
|
||||
ap : {l1 l2 : Level} {A : Set l1} {B : Set l2} {x y : A}
|
||||
→ (f : A → B)
|
||||
→ (p : x ≡ y)
|
||||
→ f x ≡ f y
|
||||
ap {l1} {l2} {A} {B} {x} {y} f p i = f (p i)
|
||||
-- J (λ x y p → f x ≡ f y) (λ x → refl) x y p
|
||||
|
||||
transport : {l₁ l₂ : Level} {A : Set l₁} {x y : A}
|
||||
→ (P : A → Set l₂)
|
||||
→ (p : x ≡ y)
|
||||
→ P x → P y
|
||||
transport {l₁} {l₂} {A} {x} {y} P p = primTransp (λ i → P (p i)) i0
|
||||
```
|
||||
|
||||
### 2.2.3 More on paths
|
||||
|
||||
#### Pathovers
|
||||
|
||||
```
|
||||
dependent-path : {A : Set}
|
||||
→ (P : A → Set)
|
||||
→ {x y : A}
|
||||
→ (p : x ≡ y)
|
||||
→ (u : P x) → (v : P y) → Set
|
||||
dependent-path P p u v = transport P p u ≡ v
|
||||
|
||||
syntax dependent-path P p u v = u ≡[ P , p ] v
|
||||
|
||||
-- https://git.mzhang.io/school/type-theory/issues/16
|
||||
apd : ∀ {a b} {A : I → Set a} {B : (i : I) → A i → Set b}
|
||||
→ (f : (i : I) → (a : A i) → B i a)
|
||||
→ {x : A i0}
|
||||
→ {y : A i1}
|
||||
→ (p : PathP A x y)
|
||||
→ PathP (λ i → B i (p i)) (f i0 x) (f i1 y)
|
||||
apd f p i = f i (p i)
|
||||
```
|
||||
|
||||
#### Squares
|
||||
|
||||
```
|
||||
data square {A : Set} {a00 : A} : {a20 a02 a22 : A}
|
||||
→ a00 ≡ a20
|
||||
→ a02 ≡ a22
|
||||
→ a00 ≡ a02
|
||||
→ a20 ≡ a22
|
||||
→ Set
|
||||
where
|
||||
reflₛ : square refl refl refl refl
|
||||
```
|
||||
|
||||
#### Squareovers and cubes
|
||||
|
||||
```
|
||||
|
||||
```
|
||||
|
||||
#### Paths in type formers
|
||||
|
||||
```
|
||||
|
||||
```
|
Loading…
Reference in a new issue