This commit is contained in:
Michael Zhang 2024-05-16 09:35:08 -05:00
parent b95699f2f0
commit 56df3385e6
4 changed files with 68 additions and 19 deletions

View file

@ -0,0 +1,29 @@
open import HottBook.Chapter1
open import HottBook.Chapter2
open import HottBook.Util
test : {A B : Set}
(equiv @ (f , fIsEquiv) : A B)
(x y : A)
(x y) (f x f y)
test (equiv @ (f , mkIsEquiv g g-id h h-id)) x y = f2 , f2IsEquiv
where
f2 : x y f x f y
f2 p = ap f p
g2 : f x f y x y
g2 p =
let p1 = ap h p in
let p2 = trans p1 (h-id y) in
let p3 = trans (sym (h-id x)) p2 in
p3
forwards : f2 g2 id
forwards b = {! !}
where
q = let y = f2 g2 in {! !}
backwards : g2 f2 id
backwards b = {! !}
f2IsEquiv = mkIsEquiv g2 forwards g2 backwards

View file

@ -1,10 +1,15 @@
```
module HottBook.Chapter2 where
<details>
<summary>Imports</summary>
open import Agda.Primitive
open import HottBook.Chapter1
open import HottBook.Util
```
```
module HottBook.Chapter2 where
open import Agda.Primitive
open import HottBook.Chapter1
open import HottBook.Util
```
</details>
## 2.1 Types are higher groupoids
@ -256,7 +261,7 @@ _≃_ : {l : Level} → (A B : Set l) → Set l
A ≃ B = Σ[ f ∈ (A → B) ] (isequiv f)
```
## 2.8 Σ-types
## 2.7 Σ-types
### Theorem 2.7.2

View file

@ -53,20 +53,20 @@ isProp P = (x y : P) → x ≡ y
### Lemma 3.3.2
```
lemma3∙2∙2 : {P : Set}
→ isProp P
→ (x₀ : P)
→ P ≃ 𝟙
lemma3∙2∙2 {P} PisProp x₀ = f , mkIsEquiv g {! forwards !} g {! !}
where
f : P → 𝟙
f x = tt
-- lemma3∙2∙2 : {P : Set}
-- → isProp P
-- → (x₀ : P)
-- → P ≃ 𝟙
-- lemma3∙2∙2 {P} PisProp x₀ = f , mkIsEquiv g {! forwards !} g {! !}
-- where
-- f : P → 𝟙
-- f x = tt
g : 𝟙 → P
g u = x₀
-- g : 𝟙 → P
-- g u = x₀
forwards : f ∘ g id
forwards x = {! refl !}
-- forwards : f ∘ g id
-- forwards x = {! refl !}
```
## 3.4 Classical vs. intuitionistic logic

View file

@ -1,5 +1,9 @@
```
module HottBook.Chapter4 where
open import HottBook.Chapter1
open import HottBook.Chapter2
open import HottBook.Chapter3
```
## 4.1 Quasi-inverses
@ -7,3 +11,14 @@ module HottBook.Chapter4 where
```
-- qinv : {A B : Type} (f : A → B) →
```
### Theorem 4.1.3
There exist types A and B and a function f : A → B such that qinv( f ) is not a mere proposition.
```
theorem4∙1∙3 : {A B : Set}
→ (f : A → B)
→ isProp (qinv f) → ⊥
theorem4∙1∙3 f p = {! !}
```