update
This commit is contained in:
parent
b95699f2f0
commit
56df3385e6
4 changed files with 68 additions and 19 deletions
29
src/2024-05-09-perry-meeting.agda
Normal file
29
src/2024-05-09-perry-meeting.agda
Normal file
|
@ -0,0 +1,29 @@
|
|||
open import HottBook.Chapter1
|
||||
open import HottBook.Chapter2
|
||||
open import HottBook.Util
|
||||
|
||||
test : {A B : Set}
|
||||
→ (equiv @ (f , fIsEquiv) : A ≃ B)
|
||||
→ (x y : A)
|
||||
→ (x ≡ y) ≃ (f x ≡ f y)
|
||||
test (equiv @ (f , mkIsEquiv g g-id h h-id)) x y = f2 , f2IsEquiv
|
||||
where
|
||||
f2 : x ≡ y → f x ≡ f y
|
||||
f2 p = ap f p
|
||||
|
||||
g2 : f x ≡ f y → x ≡ y
|
||||
g2 p =
|
||||
let p1 = ap h p in
|
||||
let p2 = trans p1 (h-id y) in
|
||||
let p3 = trans (sym (h-id x)) p2 in
|
||||
p3
|
||||
|
||||
forwards : f2 ∘ g2 ∼ id
|
||||
forwards b = {! !}
|
||||
where
|
||||
q = let y = f2 ∘ g2 in {! !}
|
||||
|
||||
backwards : g2 ∘ f2 ∼ id
|
||||
backwards b = {! !}
|
||||
|
||||
f2IsEquiv = mkIsEquiv g2 forwards g2 backwards
|
|
@ -1,10 +1,15 @@
|
|||
```
|
||||
module HottBook.Chapter2 where
|
||||
<details>
|
||||
<summary>Imports</summary>
|
||||
|
||||
open import Agda.Primitive
|
||||
open import HottBook.Chapter1
|
||||
open import HottBook.Util
|
||||
```
|
||||
```
|
||||
module HottBook.Chapter2 where
|
||||
|
||||
open import Agda.Primitive
|
||||
open import HottBook.Chapter1
|
||||
open import HottBook.Util
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## 2.1 Types are higher groupoids
|
||||
|
||||
|
@ -256,7 +261,7 @@ _≃_ : {l : Level} → (A B : Set l) → Set l
|
|||
A ≃ B = Σ[ f ∈ (A → B) ] (isequiv f)
|
||||
```
|
||||
|
||||
## 2.8 Σ-types
|
||||
## 2.7 Σ-types
|
||||
|
||||
### Theorem 2.7.2
|
||||
|
||||
|
|
|
@ -53,20 +53,20 @@ isProp P = (x y : P) → x ≡ y
|
|||
### Lemma 3.3.2
|
||||
|
||||
```
|
||||
lemma3∙2∙2 : {P : Set}
|
||||
→ isProp P
|
||||
→ (x₀ : P)
|
||||
→ P ≃ 𝟙
|
||||
lemma3∙2∙2 {P} PisProp x₀ = f , mkIsEquiv g {! forwards !} g {! !}
|
||||
where
|
||||
f : P → 𝟙
|
||||
f x = tt
|
||||
-- lemma3∙2∙2 : {P : Set}
|
||||
-- → isProp P
|
||||
-- → (x₀ : P)
|
||||
-- → P ≃ 𝟙
|
||||
-- lemma3∙2∙2 {P} PisProp x₀ = f , mkIsEquiv g {! forwards !} g {! !}
|
||||
-- where
|
||||
-- f : P → 𝟙
|
||||
-- f x = tt
|
||||
|
||||
g : 𝟙 → P
|
||||
g u = x₀
|
||||
-- g : 𝟙 → P
|
||||
-- g u = x₀
|
||||
|
||||
forwards : f ∘ g ∼ id
|
||||
forwards x = {! refl !}
|
||||
-- forwards : f ∘ g ∼ id
|
||||
-- forwards x = {! refl !}
|
||||
```
|
||||
|
||||
## 3.4 Classical vs. intuitionistic logic
|
||||
|
|
|
@ -1,5 +1,9 @@
|
|||
```
|
||||
module HottBook.Chapter4 where
|
||||
|
||||
open import HottBook.Chapter1
|
||||
open import HottBook.Chapter2
|
||||
open import HottBook.Chapter3
|
||||
```
|
||||
|
||||
## 4.1 Quasi-inverses
|
||||
|
@ -7,3 +11,14 @@ module HottBook.Chapter4 where
|
|||
```
|
||||
-- qinv : {A B : Type} (f : A → B) →
|
||||
```
|
||||
|
||||
### Theorem 4.1.3
|
||||
|
||||
There exist types A and B and a function f : A → B such that qinv( f ) is not a mere proposition.
|
||||
|
||||
```
|
||||
theorem4∙1∙3 : {A B : Set}
|
||||
→ (f : A → B)
|
||||
→ isProp (qinv f) → ⊥
|
||||
theorem4∙1∙3 f p = {! !}
|
||||
```
|
Loading…
Reference in a new issue