wip homotopy group LES
This commit is contained in:
parent
b3cd36490c
commit
5f6faff909
4 changed files with 144 additions and 3 deletions
|
@ -35,4 +35,6 @@ module _ {A B C : Group ℓ} where
|
|||
isExactAt f g = (b : ⟨ B ⟩) → (isInKer g b → isInIm f b) × (isInIm f b → isInKer g b)
|
||||
|
||||
isWeakExactAtRefl : (f : GroupHom A B) (g : GroupHom B C) → isWeakExactAt f g refl ≡ isExactAt f g
|
||||
isWeakExactAtRefl f g i = (b : ⟨ B ⟩) → (isInKer g (transportRefl b i) → isInIm f b) × (isInIm f b → isInKer g (transportRefl b i))
|
||||
isWeakExactAtRefl f g i = (b : ⟨ B ⟩) → (isInKer g (transportRefl b i) → isInIm f b) × (isInIm f b → isInKer g (transportRefl b i))
|
||||
|
||||
record ExactSequence : Type where
|
105
src/ThesisWork/HomotopyGroupLES.agda
Normal file
105
src/ThesisWork/HomotopyGroupLES.agda
Normal file
|
@ -0,0 +1,105 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module ThesisWork.HomotopyGroupLES where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.Pointed
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.Function
|
||||
open import Cubical.HITs.TypeQuotients
|
||||
open import Cubical.Foundations.Structure
|
||||
open import Cubical.Data.Sigma
|
||||
open import Cubical.Data.Fin
|
||||
open import Cubical.Data.Nat
|
||||
open import Cubical.Data.Nat.Order
|
||||
open import Cubical.Data.Empty renaming (rec to ⊥-rec)
|
||||
open import Cubical.Relation.Nullary
|
||||
open import Cubical.Structures.Successor
|
||||
open import Cubical.Algebra.Group
|
||||
open import Cubical.Algebra.Group.Morphisms
|
||||
open import Cubical.Homotopy.Group.Base
|
||||
open import Cubical.Homotopy.Loopspace
|
||||
|
||||
-- The long exact sequence of homotopy groups
|
||||
-- Except indexed by a successor structure (Cubical.Structures.Successor)
|
||||
-- Also based off of Axel Ljungstrom's work in Cubical.Homotopy.Group.LES
|
||||
|
||||
private
|
||||
variable
|
||||
ℓ ℓ' ℓ'' : Level
|
||||
|
||||
module _ where
|
||||
open SuccStr
|
||||
|
||||
NFin3 : Type ℓ-zero
|
||||
NFin3 = ℕ × Fin 3
|
||||
|
||||
sucNFin3 : NFin3 → NFin3
|
||||
sucNFin3 (n , 0 , _) = n , fsuc fzero
|
||||
sucNFin3 (n , 1 , _) = n , fsuc (fsuc fzero)
|
||||
sucNFin3 (n , 2 , _) = (suc n) , fzero
|
||||
sucNFin3 (n , suc (suc (suc _)) , p) = ⊥-rec (¬m+n<m p)
|
||||
|
||||
NFin3+ : SuccStr ℓ-zero
|
||||
NFin3+ .Index = NFin3
|
||||
NFin3+ .succ = sucNFin3
|
||||
|
||||
Fiber : {A B : Pointed ℓ} (f : A →∙ B) → Pointed ℓ
|
||||
Fiber {A = A , a} {B = B , b} (f , feq) = (fiber f b) , a , feq
|
||||
|
||||
-- Lemma 4.1.5 in FVD thesis
|
||||
-- Suppose given a pointed map f : A →∗ B
|
||||
module _ {A B : Pointed ℓ} (f : A →∙ B) where
|
||||
private
|
||||
-- Let p1 : fib_f →∗ A be the first projection.
|
||||
p₁ : Fiber f →∙ A
|
||||
p₁ = fst , refl
|
||||
|
||||
-- Then there is a pointed natural equivalence e_f
|
||||
lemmaEqv : Fiber p₁ ≃∙ Ω B
|
||||
lemmaEqv .fst = {! !}
|
||||
lemmaEqv .snd = {! !}
|
||||
|
||||
module πLES {X Y : Pointed ℓ} (f : X →∙ Y) where
|
||||
private
|
||||
F : Pointed ℓ
|
||||
F = Fiber f
|
||||
|
||||
πSeq : NFin3 → Group ℓ
|
||||
πSeq (n , 0 , p) = πGr n Y
|
||||
πSeq (n , 1 , p) = πGr n X
|
||||
πSeq (n , 2 , p) = πGr n F
|
||||
πSeq (n , suc (suc (suc k)) , p) = ⊥-rec (¬m+n<m p)
|
||||
|
||||
-- First projection pointed function
|
||||
p₁ : F →∙ X
|
||||
p₁ = fst , refl
|
||||
|
||||
-- Step 1
|
||||
module Step1 where
|
||||
arrow* = Σ (Pointed ℓ) λ X → Σ (Pointed ℓ) λ Y → X →∙ Y
|
||||
|
||||
private
|
||||
F' : arrow* → arrow*
|
||||
F' (X , Y , f) = Fiber f , X , fst , refl
|
||||
|
||||
F'^ : (n : ℕ) → arrow* → arrow*
|
||||
F'^ zero a = a
|
||||
F'^ (suc n) a = F' (F'^ n a)
|
||||
|
||||
-- Given a pointed map f : X →∗ Y, we define its fiber sequence
|
||||
ASeq : ℕ → Pointed ℓ
|
||||
ASeq n = (F'^ n (X , Y , f)) .snd .fst
|
||||
|
||||
fSeq : (n : ℕ) → (ASeq (suc n) →∙ ASeq n)
|
||||
fSeq n = (F'^ n (X , Y , f)) .snd .snd
|
||||
|
||||
-- δ : ΩY → F
|
||||
δ : Ω Y →∙ F
|
||||
δ = {! p₁ !} ∘∙ {! !}
|
||||
|
||||
πSeqHom : (n : NFin3) → GroupHom (πSeq (sucNFin3 n)) (πSeq n)
|
||||
πSeqHom (n , 0 , p) = πHom n f
|
||||
πSeqHom (n , 1 , p) = πHom n p₁
|
||||
πSeqHom (n , 2 , p) = {! πHom !}
|
||||
πSeqHom (n , suc (suc (suc k)) , p) = ⊥-rec (¬m+n<m p)
|
|
@ -40,8 +40,8 @@ record IsSpectrum {ℓ ℓ' : Level} {N : SuccStr ℓ'} (P : Prespectrum {ℓ =
|
|||
field
|
||||
eIsEquiv : ∀ (n : Index) → isPointedEquiv (e n)
|
||||
|
||||
Spectrum : SuccStr ℓ → Type (ℓ-suc ℓ)
|
||||
Spectrum {ℓ = ℓ} N = Σ (Prespectrum N) IsSpectrum
|
||||
Spectrum : ∀ {ℓ ℓ'} → SuccStr ℓ' → Type (ℓ-max (ℓ-suc ℓ) ℓ')
|
||||
Spectrum {ℓ} {ℓ'} N = Σ (Prespectrum {ℓ} {ℓ'} N) IsSpectrum
|
||||
|
||||
ℤ-Spectrum : Type (ℓ-suc ℓ-zero)
|
||||
ℤ-Spectrum = Spectrum ℤ+
|
||||
|
@ -59,3 +59,15 @@ record PrespectrumMap {ℓN ℓ₁ ℓ₂ : Level} {N : SuccStr ℓN}
|
|||
|
||||
-- TODO: Visualize this
|
||||
p : (n : Index) → (e₂ n ∘∙ f n) ∙∼ (Ω→ (f (succ n)) ∘∙ e₁ n)
|
||||
|
||||
-- Also from definition 5.3.1 of FVD thesis
|
||||
-- TODO: Are we sure we can just discard the spectrum data?
|
||||
SpectrumMap : {ℓN ℓ₁ ℓ₂ : Level} {N : SuccStr ℓN} (S₁ : Spectrum {ℓ = ℓ₁} N) (S₂ : Spectrum {ℓ = ℓ₂} N) → Type (ℓ-max ℓN (ℓ-max ℓ₁ ℓ₂))
|
||||
SpectrumMap S₁ S₂ = PrespectrumMap (S₁ .fst) (S₂ .fst)
|
||||
|
||||
-- open Prespectrum (S₁ .fst) renaming (Y to Y₁; e to e₁)
|
||||
-- open Prespectrum (S₂ .fst) renaming (Y to Y₂; e to e₂)
|
||||
-- open SuccStr N
|
||||
-- field
|
||||
-- f : (n : Index) → Y₁ n →∙ Y₂ n
|
||||
-- p : (n : Index) → (e₂ n ∘∙ f n) ∙∼ (Ω→ (f (succ n)) ∘∙ e₁ n)
|
22
src/ThesisWork/SpectrumLES.agda
Normal file
22
src/ThesisWork/SpectrumLES.agda
Normal file
|
@ -0,0 +1,22 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module ThesisWork.SpectrumLES where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.Pointed
|
||||
open import Cubical.Foundations.Function
|
||||
open import Cubical.HITs.TypeQuotients
|
||||
open import Cubical.Foundations.Structure
|
||||
open import Cubical.Structures.Successor
|
||||
|
||||
-- The main theorem of this file is the long exact sequence of spectra
|
||||
-- from Theorem 5.3.5 of FVD thesis
|
||||
|
||||
private
|
||||
variable
|
||||
ℓ ℓ' ℓ'' : Level
|
||||
|
||||
-- First, lemma 5.3.6 of FVD thesis
|
||||
private
|
||||
module _ {N M : SuccStr ℓ} where
|
||||
lemma : {! !}
|
Loading…
Reference in a new issue