wip exercise 3.1
This commit is contained in:
parent
48064f12df
commit
76613a032b
3 changed files with 47 additions and 13 deletions
|
@ -474,7 +474,7 @@ lemma3∙9∙1 {P} Pprop = lemma3∙3∙3 Pprop prop2 ∣_∣ g
|
|||
what = gpx ∙ eqP
|
||||
prevResult = (lemma3∙9∙1 {P} Pprop) .snd .isequiv.g-id
|
||||
in
|
||||
{! !}
|
||||
admit
|
||||
where
|
||||
postulate
|
||||
-- TODO: Finish this
|
||||
|
@ -658,5 +658,8 @@ module lemma3∙11∙10 where
|
|||
i f x y = Σ.fst (f x y)
|
||||
|
||||
ii : {A : Set} → isProp A → ((x y : A) → isContr (x ≡ y))
|
||||
ii f x y = f x y , λ z → {! !}
|
||||
ii f x y = f x y , admit
|
||||
where
|
||||
postulate
|
||||
admit : (z : x ≡ y) → f x y ≡ z
|
||||
```
|
|
@ -16,17 +16,31 @@ exercise3∙1 : {A B : Set}
|
|||
→ isSet A
|
||||
→ isSet B
|
||||
exercise3∙1 {A} {B} equiv@(f , mkIsEquiv g g* h h*) isSetA xB yB pB qB =
|
||||
let
|
||||
xA = g xB
|
||||
yA = g yB
|
||||
pA : xA ≡ yA
|
||||
pA = ap g pB
|
||||
qA : xA ≡ yA
|
||||
qA = ap g qB
|
||||
eq = isSetA xA yA pA qA
|
||||
idAB = axiom2∙10∙3.ua equiv
|
||||
eqB = transport (λ S → {! !}) idAB eq
|
||||
in {! !}
|
||||
{! !}
|
||||
where
|
||||
open axiom2∙10∙3
|
||||
p : A ≡ B
|
||||
p = ua equiv
|
||||
|
||||
lol = isSetA (g xB) (g yB) (ap g pB) (ap g qB)
|
||||
|
||||
lol2 : ap f (ap g pB) ≡ ap f (ap g qB)
|
||||
lol2 = ap (ap f) lol
|
||||
|
||||
lol3 : ap (f ∘ g) pB ≡ ap (f ∘ g) qB
|
||||
lol3 = sym (lemma2∙2∙2.iii g f pB) ∙ lol2 ∙ (lemma2∙2∙2.iii g f qB)
|
||||
|
||||
lemma1 : ∀ {A B} {x y : A} (f g : A → B)
|
||||
→ (p : x ≡ y)
|
||||
→ f ≡ g
|
||||
→ ap f p ≃ {! ap g p !}
|
||||
lemma1 = {! !}
|
||||
|
||||
-- lol4 : ∀ {A B} {x y : B}
|
||||
-- → (p : x ≡ y) → (f : A → B) → (g : B → A)
|
||||
-- → ap (f ∘ g) ∼ id
|
||||
-- lol4 refl f g x = {! !}
|
||||
|
||||
```
|
||||
|
||||
### Exercise 3.5
|
||||
|
|
17
src/HottBook/Chapter8.lagda.md
Normal file
17
src/HottBook/Chapter8.lagda.md
Normal file
|
@ -0,0 +1,17 @@
|
|||
<details>
|
||||
<summary>Imports</summary>
|
||||
|
||||
```
|
||||
module HottBook.Chapter8 where
|
||||
|
||||
open import HottBook.Chapter1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### Definition 8.0.1
|
||||
|
||||
```
|
||||
π : (n : ℕ) → (A : Set) → (a : A) → Set
|
||||
-- π n A a = ∥ ? ∥₀
|
||||
```
|
Loading…
Reference in a new issue