wtf
This commit is contained in:
parent
c1788c20fb
commit
81fb1d0c77
6 changed files with 7 additions and 144 deletions
3
.gitignore
vendored
3
.gitignore
vendored
|
@ -4,4 +4,5 @@ node_modules
|
|||
|
||||
logseq
|
||||
!logseq/custom.edn
|
||||
!logseq/custom.css
|
||||
!logseq/custom.css
|
||||
.pijul
|
||||
|
|
2
.ignore
Normal file
2
.ignore
Normal file
|
@ -0,0 +1,2 @@
|
|||
.git
|
||||
.DS_Store
|
|
@ -17,7 +17,9 @@ module lemma211 where
|
|||
|
||||
module lemma212 where
|
||||
lemma : {A : Type l} → {x y z : A} → x ≡ y → y ≡ z → x ≡ z
|
||||
lemma {x = x} p q i = hcomp (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (p i)
|
||||
lemma {x = x} p q i = hcomp
|
||||
(λ j → λ { (i = i0) → x ; (i = i1) → q j })
|
||||
(p i)
|
||||
|
||||
module lemma214 where
|
||||
private
|
||||
|
|
|
@ -1,92 +0,0 @@
|
|||
```
|
||||
{-# OPTIONS --cubical --without-K #-}
|
||||
module CubicalHottBook.Chapter2 where
|
||||
|
||||
open import CubicalHottBook.Prelude
|
||||
|
||||
private
|
||||
variable
|
||||
l l2 : Level
|
||||
```
|
||||
|
||||
### Lemma 2.3.5
|
||||
|
||||
```
|
||||
transportconst : {A : Type l} {x y : A}
|
||||
→ (B : Type l2)
|
||||
→ (p : x ≡ y)
|
||||
→ (b : B)
|
||||
→ subst (λ _ → B) p b ≡ b
|
||||
transportconst B p b i = {! !}
|
||||
```
|
||||
|
||||
### Definition 2.4.1
|
||||
|
||||
```
|
||||
_∼_ : {X : Type l} {Y : X → Type l2} → (f g : (x : X) → Y x) → Type (ℓ-max l l2)
|
||||
_∼_ {X = X} f g = (x : X) → f x ≡ g x
|
||||
```
|
||||
|
||||
### Definition 2.4.6
|
||||
|
||||
```
|
||||
record qinv {A B : Type} (f : A → B) : Type where
|
||||
constructor mkQinv
|
||||
field
|
||||
g : B → A
|
||||
forward : (f ∘ g) ∼ id
|
||||
backward : (g ∘ f) ∼ id
|
||||
```
|
||||
|
||||
### Example 2.4.7
|
||||
|
||||
```
|
||||
id-qinv : {A : Type} → qinv (id {A = A})
|
||||
id-qinv {A = A} = mkQinv id id-homotopy id-homotopy where
|
||||
id-homotopy : (x : A) → (id ∘ id) x ≡ id x
|
||||
id-homotopy x = refl
|
||||
```
|
||||
|
||||
### Definition 2.4.10
|
||||
|
||||
```
|
||||
mkIsEquiv : {A B : Type} {f : A → B}
|
||||
→ (g : B → A)
|
||||
→ (f ∘ g) ∼ id
|
||||
→ (g ∘ f) ∼ id
|
||||
→ isEquiv f
|
||||
mkIsEquiv {B = B} {f = f} g forward backward = record { equiv-proof = eqv-prf } where
|
||||
postulate
|
||||
helper : (y : B) → (z : fiber f y) → (g y , forward y) ≡ z
|
||||
|
||||
eqv-prf : (y : B) → isContr (fiber f y)
|
||||
eqv-prf y = (g y , forward y) , helper y
|
||||
```
|
||||
|
||||
### Theorem 2.11.3
|
||||
|
||||
```
|
||||
-- theorem2∙11∙3 : {A B : Type} {f g : A → B} {a a' : A}
|
||||
-- → (p : a ≡ a')
|
||||
-- → (q : f a ≡ g a)
|
||||
-- → subst (λ x → f x ≡ g x) p q ≡ sym (ap f p) ∙ q ∙ ap g p
|
||||
-- theorem2∙11∙3 refl q = sym (unitR q)
|
||||
```
|
||||
|
||||
### Theorem 2.11.5
|
||||
|
||||
```
|
||||
-- postulate
|
||||
-- theorem2∙11∙5 : {A : Type} {a a' : A}
|
||||
-- → (p : a ≡ a')
|
||||
-- → (q : a ≡ a)
|
||||
-- → (r : a' ≡ a')
|
||||
-- → (transport (λ x → x ≡ x) p q ≡ r) ≃ (q ∙ p ≡ p ∙ r)
|
||||
-- theorem2∙11∙5 {a = a} refl q r = f , mkIsEquiv g {! !} {! !} where
|
||||
-- f : (q ≡ r) → (q ∙ refl ≡ r)
|
||||
-- f refl = unitR q
|
||||
-- g : (q ∙ refl ≡ r) → (q ≡ r)
|
||||
-- g refl = sym (unitR q)
|
||||
-- forward : (f ∘ g) ∼ id
|
||||
-- forward refl = {! refl !}
|
||||
```
|
|
@ -1,38 +0,0 @@
|
|||
```
|
||||
{-# OPTIONS --cubical --without-K #-}
|
||||
module CubicalHottBook.Chapter6 where
|
||||
|
||||
open import CubicalHottBook.Prelude
|
||||
open import CubicalHottBook.Chapter2
|
||||
```
|
||||
|
||||
```
|
||||
dep-path : {l l2 : Level} {A : Set l} {x y : A} → (P : A → Set l2) → (p : x ≡ y) → (u : P x) → (v : P y) → Set l2
|
||||
dep-path P p u v = transport P p u ≡ v
|
||||
|
||||
syntax dep-path P p u v = u ≡[ P , p ] v
|
||||
```
|
||||
|
||||
## Circle
|
||||
|
||||
### Lemma 6.2.5
|
||||
|
||||
```
|
||||
lemma6∙2∙5 : {A : Type}
|
||||
→ (a : A)
|
||||
→ (p : a ≡ a)
|
||||
→ S¹ → A
|
||||
lemma6∙2∙5 a p base = a
|
||||
lemma6∙2∙5 a p (S¹.loop i) = {! !}
|
||||
```
|
||||
|
||||
### Lemma 6.2.8
|
||||
|
||||
```
|
||||
lemma6∙2∙8 : {A : Type} {f g : S¹ → A}
|
||||
→ (p : f base ≡ g base)
|
||||
→ (q : (ap f loop) ≡[ (λ x → x ≡ x) , p ] (ap g loop))
|
||||
→ (x : S¹) → f x ≡ g x
|
||||
lemma6∙2∙8 p q base = p
|
||||
lemma6∙2∙8 p q (S¹.loop i) = {! !}
|
||||
```
|
|
@ -1,12 +0,0 @@
|
|||
{-# OPTIONS --cubical --without-K #-}
|
||||
module CubicalHottBook.Prelude where
|
||||
|
||||
open import Cubical.Foundations.Function public
|
||||
open import Data.Product.Properties public
|
||||
open import Cubical.Foundations.Prelude public
|
||||
open import Cubical.Foundations.Equiv public
|
||||
|
||||
module Inductive where
|
||||
open import Cubical.Data.Equality public
|
||||
|
||||
open Inductive public using (id)
|
Loading…
Reference in a new issue