This commit is contained in:
Michael Zhang 2024-09-15 19:39:17 -05:00
parent c1788c20fb
commit 81fb1d0c77
6 changed files with 7 additions and 144 deletions

3
.gitignore vendored
View file

@ -4,4 +4,5 @@ node_modules
logseq
!logseq/custom.edn
!logseq/custom.css
!logseq/custom.css
.pijul

2
.ignore Normal file
View file

@ -0,0 +1,2 @@
.git
.DS_Store

View file

@ -17,7 +17,9 @@ module lemma211 where
module lemma212 where
lemma : {A : Type l} {x y z : A} x y y z x z
lemma {x = x} p q i = hcomp (λ j λ { (i = i0) x ; (i = i1) q j }) (p i)
lemma {x = x} p q i = hcomp
(λ j λ { (i = i0) x ; (i = i1) q j })
(p i)
module lemma214 where
private

View file

@ -1,92 +0,0 @@
```
{-# OPTIONS --cubical --without-K #-}
module CubicalHottBook.Chapter2 where
open import CubicalHottBook.Prelude
private
variable
l l2 : Level
```
### Lemma 2.3.5
```
transportconst : {A : Type l} {x y : A}
→ (B : Type l2)
→ (p : x ≡ y)
→ (b : B)
→ subst (λ _ → B) p b ≡ b
transportconst B p b i = {! !}
```
### Definition 2.4.1
```
__ : {X : Type l} {Y : X → Type l2} → (f g : (x : X) → Y x) → Type (-max l l2)
__ {X = X} f g = (x : X) → f x ≡ g x
```
### Definition 2.4.6
```
record qinv {A B : Type} (f : A → B) : Type where
constructor mkQinv
field
g : B → A
forward : (f ∘ g) id
backward : (g ∘ f) id
```
### Example 2.4.7
```
id-qinv : {A : Type} → qinv (id {A = A})
id-qinv {A = A} = mkQinv id id-homotopy id-homotopy where
id-homotopy : (x : A) → (id ∘ id) x ≡ id x
id-homotopy x = refl
```
### Definition 2.4.10
```
mkIsEquiv : {A B : Type} {f : A → B}
→ (g : B → A)
→ (f ∘ g) id
→ (g ∘ f) id
→ isEquiv f
mkIsEquiv {B = B} {f = f} g forward backward = record { equiv-proof = eqv-prf } where
postulate
helper : (y : B) → (z : fiber f y) → (g y , forward y) ≡ z
eqv-prf : (y : B) → isContr (fiber f y)
eqv-prf y = (g y , forward y) , helper y
```
### Theorem 2.11.3
```
-- theorem2∙11∙3 : {A B : Type} {f g : A → B} {a a' : A}
-- → (p : a ≡ a')
-- → (q : f a ≡ g a)
-- → subst (λ x → f x ≡ g x) p q ≡ sym (ap f p) ∙ q ∙ ap g p
-- theorem2∙11∙3 refl q = sym (unitR q)
```
### Theorem 2.11.5
```
-- postulate
-- theorem2∙11∙5 : {A : Type} {a a' : A}
-- → (p : a ≡ a')
-- → (q : a ≡ a)
-- → (r : a' ≡ a')
-- → (transport (λ x → x ≡ x) p q ≡ r) ≃ (q ∙ p ≡ p ∙ r)
-- theorem2∙11∙5 {a = a} refl q r = f , mkIsEquiv g {! !} {! !} where
-- f : (q ≡ r) → (q ∙ refl ≡ r)
-- f refl = unitR q
-- g : (q ∙ refl ≡ r) → (q ≡ r)
-- g refl = sym (unitR q)
-- forward : (f ∘ g) id
-- forward refl = {! refl !}
```

View file

@ -1,38 +0,0 @@
```
{-# OPTIONS --cubical --without-K #-}
module CubicalHottBook.Chapter6 where
open import CubicalHottBook.Prelude
open import CubicalHottBook.Chapter2
```
```
dep-path : {l l2 : Level} {A : Set l} {x y : A} → (P : A → Set l2) → (p : x ≡ y) → (u : P x) → (v : P y) → Set l2
dep-path P p u v = transport P p u ≡ v
syntax dep-path P p u v = u ≡[ P , p ] v
```
## Circle
### Lemma 6.2.5
```
lemma6∙2∙5 : {A : Type}
→ (a : A)
→ (p : a ≡ a)
→ S¹ → A
lemma6∙2∙5 a p base = a
lemma6∙2∙5 a p (S¹.loop i) = {! !}
```
### Lemma 6.2.8
```
lemma6∙2∙8 : {A : Type} {f g : S¹ → A}
→ (p : f base ≡ g base)
→ (q : (ap f loop) ≡[ (λ x → x ≡ x) , p ] (ap g loop))
→ (x : S¹) → f x ≡ g x
lemma6∙2∙8 p q base = p
lemma6∙2∙8 p q (S¹.loop i) = {! !}
```

View file

@ -1,12 +0,0 @@
{-# OPTIONS --cubical --without-K #-}
module CubicalHottBook.Prelude where
open import Cubical.Foundations.Function public
open import Data.Product.Properties public
open import Cubical.Foundations.Prelude public
open import Cubical.Foundations.Equiv public
module Inductive where
open import Cubical.Data.Equality public
open Inductive public using (id)