wip lemma 4.1.5
This commit is contained in:
parent
e64326c1c3
commit
84bd2a2b85
8 changed files with 66 additions and 4 deletions
BIN
resources/AT+.pdf
vendored
Normal file
BIN
resources/AT+.pdf
vendored
Normal file
Binary file not shown.
BIN
resources/VanDoornDissertation/dissertation-ebook.pdf
vendored
Normal file
BIN
resources/VanDoornDissertation/dissertation-ebook.pdf
vendored
Normal file
Binary file not shown.
BIN
resources/VanDoornDissertation/dissertation.pdf
vendored
BIN
resources/VanDoornDissertation/dissertation.pdf
vendored
Binary file not shown.
|
@ -2,10 +2,9 @@
|
|||
|
||||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module ThesisWork.ChainComplex where
|
||||
module ThesisWork.Pi3S2.ChainComplex where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Agda.Primitive
|
||||
|
||||
SuccStr : ∀ {l} → Type (lsuc l)
|
||||
SuccStr {l} = Σ (Type l) (λ carrier → carrier → carrier)
|
||||
data ChainComplex : Type where
|
|
@ -1,6 +1,6 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module ThesisWork.LES where
|
||||
module ThesisWork.Pi3S2.LES where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.Pointed
|
36
src/ThesisWork/Pi3S2/Lemma4-1-5.agda
Normal file
36
src/ThesisWork/Pi3S2/Lemma4-1-5.agda
Normal file
|
@ -0,0 +1,36 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module ThesisWork.Pi3S2.Lemma4-1-5 where
|
||||
|
||||
open import Cubical.Data.Sigma
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.Equiv.Properties
|
||||
open import Cubical.Foundations.Isomorphism
|
||||
open import Cubical.Foundations.Pointed
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Homotopy.Loopspace
|
||||
|
||||
fiberF : {l : Level} {A∙ B∙ : Pointed l} → (f : A∙ →∙ B∙) → Pointed l
|
||||
fiberF {A∙ = A∙ @ (A , a)} {B∙ = B∙ @ (B , b)} f = fiber (fst f) b , a , (snd f)
|
||||
|
||||
lemma : ∀ {l : Level} {A∙ @ (A , a) B∙ @ (B , b) : Pointed l}
|
||||
→ (f : A∙ →∙ B∙)
|
||||
→ let
|
||||
p₁ : fiberF f →∙ A∙
|
||||
p₁ = fst , refl
|
||||
in fiberF p₁ ≃∙ (Ω B∙)
|
||||
lemma {A∙ = A∙ @ (A , a0)} {B∙ = B∙ @ (B , b0)} f∙ @ (f , f-eq) = eqv , {! !} where
|
||||
eqv : fst (fiberF ((λ r → fst r) , refl)) ≃ fst (Ω B∙)
|
||||
eqv =
|
||||
fst (fiberF ((λ r → fst r) , refl))
|
||||
≃⟨ {! !} ⟩
|
||||
Σ (fst (fiberF f∙)) (λ fibf @ (a , p) → a ≡ a0)
|
||||
≃⟨ {! !} ⟩
|
||||
Σ A (λ a → (a ≡ a0) × (f a ≡ b0))
|
||||
≃⟨ {! !} ⟩
|
||||
f a0 ≡ b0
|
||||
≃⟨ {! !} ⟩
|
||||
b0 ≡ b0
|
||||
≃⟨ idEquiv (b0 ≡ b0) ⟩
|
||||
fst (Ω B∙)
|
||||
■
|
24
src/ThesisWork/Pi3S2/SuccStr.agda
Normal file
24
src/ThesisWork/Pi3S2/SuccStr.agda
Normal file
|
@ -0,0 +1,24 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module ThesisWork.Pi3S2.SuccStr where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Data.Nat
|
||||
|
||||
SuccStr : (I : Type) (S : I → I) → (i : I) → (n : ℕ) → I
|
||||
SuccStr I S i zero = i
|
||||
SuccStr I S i (suc n) = S (SuccStr I S i n)
|
||||
|
||||
-- Examples of successor structures:
|
||||
|
||||
module _ where
|
||||
-- (ℕ , λ n . n + 1)
|
||||
ℕ-SuccStr : (i : ℕ) → (n : ℕ) → ℕ
|
||||
ℕ-SuccStr = SuccStr ℕ suc
|
||||
|
||||
module _ where
|
||||
open import Data.Integer renaming (suc to zsuc)
|
||||
|
||||
-- (ℤ , λ n . n + 1)
|
||||
ℤ-SuccStr : (i : ℤ) → (n : ℕ) → ℤ
|
||||
ℤ-SuccStr = SuccStr ℤ zsuc
|
3
src/ThesisWork/README.md
Normal file
3
src/ThesisWork/README.md
Normal file
|
@ -0,0 +1,3 @@
|
|||
# Notes
|
||||
|
||||
- Already some existing work by Felix Cherubini (@felixwellen) about spectra here: https://github.com/agda/cubical/pull/723
|
Loading…
Reference in a new issue