solve case 1 of theorem 7.1.11
This commit is contained in:
parent
136d9f67c3
commit
aa460fd5af
5 changed files with 71 additions and 36 deletions
|
@ -4,7 +4,7 @@ module CubicalHott.Example3-6-2 where
|
|||
|
||||
open import Cubical.Foundations.Prelude
|
||||
|
||||
example : {A : Type} → {B : A → Type}
|
||||
example : {l l2 : Level} → {A : Type l} → {B : A → Type l2}
|
||||
→ ((x : A) → isProp (B x))
|
||||
→ isProp ((x : A) → B x)
|
||||
example B-x-prop fx fy = λ i z → B-x-prop z (B-x-prop z (fx z) (fy z) i) (B-x-prop z (fx z) (fy z) i) i
|
|
@ -5,8 +5,8 @@ module CubicalHott.Lemma3-11-4 where
|
|||
open import Cubical.Foundations.Prelude
|
||||
open import CubicalHott.Example3-6-2 renaming (example to example3-6-2)
|
||||
|
||||
lemma : {A : Type} → isProp (isContr A)
|
||||
lemma {A} A-contr-x @ (x , px) (y , py) i =
|
||||
lemma : {l : Level} → {A : Type l} → isProp (isContr A)
|
||||
lemma {A = A} A-contr-x @ (x , px) (y , py) i =
|
||||
px y i , goal i where
|
||||
A-is-set = isProp→isSet (isContr→isProp A-contr-x)
|
||||
|
||||
|
|
15
src/CubicalHott/Lemma3-5-1.agda
Normal file
15
src/CubicalHott/Lemma3-5-1.agda
Normal file
|
@ -0,0 +1,15 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module CubicalHott.Lemma3-5-1 where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
|
||||
lemma : {l l2 : Level} → {A : Type l} → {P : A → Type l2}
|
||||
→ ((x : A) → isProp (P x))
|
||||
→ (u v : Σ A P)
|
||||
→ (fst u ≡ fst v)
|
||||
→ u ≡ v
|
||||
lemma {P = P} Px-isProp u v p i = p i , goal i where
|
||||
goal : PathP (λ i → P (p i)) (snd u) (snd v)
|
||||
goal = toPathP (Px-isProp (fst v) (subst P p (snd u)) (snd v))
|
||||
|
|
@ -8,7 +8,7 @@ open import Cubical.Data.Nat
|
|||
|
||||
open import CubicalHott.Lemma3-11-4 renaming (lemma to lemma3-11-4)
|
||||
|
||||
theorem : {X : Type} → (n : ℕ) → isProp (isOfHLevel n X)
|
||||
theorem : {l : Level} → {X : Type l} → (n : ℕ) → isProp (isOfHLevel n X)
|
||||
theorem zero = lemma3-11-4
|
||||
theorem (suc zero) isProp1 isProp2 i x y j = isProp→isSet isProp1 x y (isProp1 x y) (isProp2 x y) i j
|
||||
theorem {X = X} (suc (suc n)) isHLevel1 isHLevel2 =
|
||||
|
|
|
@ -11,47 +11,67 @@ open import Cubical.Foundations.Univalence
|
|||
open import Cubical.Data.Nat
|
||||
open import Data.Unit
|
||||
|
||||
open import CubicalHott.Lemma3-5-1 renaming (lemma to lemma3-5-1)
|
||||
open import CubicalHott.Theorem7-1-8 renaming (theorem to theorem7-1-8)
|
||||
open import CubicalHott.Theorem7-1-10 renaming (theorem to theorem7-1-10)
|
||||
|
||||
lemma : ∀ {l} → (n : HLevel) → isOfHLevel (suc n) (TypeOfHLevel l n)
|
||||
lemma zero (A , a , Acontr) (B , b , Bcontr) i = A≡B i , a≡b i , λ y j → wtf i y j where
|
||||
eqv1 : A ≃ B
|
||||
eqv1 = isoToEquiv (iso (λ _ → b) (λ _ → a) Bcontr Acontr)
|
||||
lemma zero (A , a , Acontr) (B , b , Bcontr) i =
|
||||
A≡B i , goal i where
|
||||
-- isContr (A≡B i)
|
||||
-- Acontr ≡ Bcontr
|
||||
|
||||
A≡B : A ≡ B
|
||||
A≡B = ua eqv1
|
||||
-- A≡B i , a≡b i , λ y j → wtf i y j where
|
||||
eqv1 : A ≃ B
|
||||
eqv1 = isoToEquiv (iso (λ _ → b) (λ _ → a) Bcontr Acontr)
|
||||
|
||||
a≡b : PathP (λ i → A≡B i) a b
|
||||
a≡b j = glue (λ { (j = i0) → a ; (j = i1) → b }) b
|
||||
A≡B : A ≡ B
|
||||
A≡B = ua eqv1
|
||||
|
||||
-- eqv2 : ((y : A) → a ≡ y) ≡ ((y : B) → b ≡ y)
|
||||
-- eqv2 = λ i → (y : A≡B i) → a≡b i ≡ y
|
||||
a≡b : PathP (λ i → A≡B i) a b
|
||||
a≡b j = glue (λ { (j = i0) → a ; (j = i1) → b }) b
|
||||
|
||||
-- T1 = λ { (i = i0) → ((y : A) → a ≡ y) ; (i = i1) → ((y : B) → b ≡ y) }
|
||||
-- e1 = λ { (i = i0) → pathToEquiv eqv2 ; (i = i1) → idEquiv ((y : B) → b ≡ y) }
|
||||
-- Uhh = primGlue ((y : B) → b ≡ y) T1 e1
|
||||
|
||||
-- uhh : Uhh
|
||||
-- uhh = glue {T = T1} {e = e1} (λ { (i = i0) → Acontr ; (i = i1) → Bcontr }) λ y j → {! Bcontr y j !}
|
||||
helper2 : (x : B) → isProp ((y : B) → x ≡ y)
|
||||
helper2 x f1 f2 =
|
||||
let helper = isProp→isSet (isContr→isProp (b , Bcontr)) in
|
||||
funExt (λ (y : B) → helper x y (f1 y) (f2 y))
|
||||
|
||||
Acontr-is-Prop : isProp ((y : A) → a ≡ y)
|
||||
helper : subst isContr A≡B (a , Acontr) ≡ (b , Bcontr)
|
||||
helper = lemma3-5-1 helper2 (subst isContr A≡B (a , Acontr)) (b , Bcontr) (fromPathP a≡b)
|
||||
|
||||
wtf : PathP (λ i → (y : A≡B i) → a≡b i ≡ y) Acontr Bcontr
|
||||
wtf = λ i y j → {! !}
|
||||
goal : PathP (λ i → isContr (A≡B i)) (a , Acontr) (b , Bcontr)
|
||||
goal = toPathP helper
|
||||
|
||||
-- -- eqv2 : ((y : A) → a ≡ y) ≡ ((y : B) → b ≡ y)
|
||||
-- -- eqv2 = λ i → (y : A≡B i) → a≡b i ≡ y
|
||||
|
||||
-- -- T1 = λ { (i = i0) → ((y : A) → a ≡ y) ; (i = i1) → ((y : B) → b ≡ y) }
|
||||
-- -- e1 = λ { (i = i0) → pathToEquiv eqv2 ; (i = i1) → idEquiv ((y : B) → b ≡ y) }
|
||||
-- -- Uhh = primGlue ((y : B) → b ≡ y) T1 e1
|
||||
|
||||
-- -- uhh : Uhh
|
||||
-- -- uhh = glue {T = T1} {e = e1} (λ { (i = i0) → Acontr ; (i = i1) → Bcontr }) λ y j → {! Bcontr y j !}
|
||||
|
||||
-- Acontr-is-Prop : isProp ((y : A) → a ≡ y)
|
||||
|
||||
-- wtf : PathP (λ i → (y : A≡B i) → a≡b i ≡ y) Acontr Bcontr
|
||||
-- wtf = λ i y j → {! !}
|
||||
|
||||
|
||||
-- a≡b i ≡ y
|
||||
-- ———— Boundary (wanted) —————————————————————————————————————
|
||||
-- i = i0 ⊢ λ i₁ → Acontr y i₁
|
||||
-- i = i1 ⊢ λ i₁ → Bcontr y i₁
|
||||
-- -- a≡b i ≡ y
|
||||
-- -- ———— Boundary (wanted) —————————————————————————————————————
|
||||
-- -- i = i0 ⊢ λ i₁ → Acontr y i₁
|
||||
-- -- i = i1 ⊢ λ i₁ → Bcontr y i₁
|
||||
|
||||
-- z = let
|
||||
-- z1 = λ (y : A≡B i) (j : I) →
|
||||
-- let u = λ k → λ where
|
||||
-- (i = i0) → Acontr y (~ j)
|
||||
-- (i = i1) → Bcontr y j
|
||||
-- (j = i0) → a≡b i
|
||||
-- (j = i1) → {! y i !}
|
||||
-- in hfill u (inS (a≡b {! j !})) j
|
||||
-- in {! !}
|
||||
-- z = let
|
||||
-- z1 = λ (y : A≡B i) (j : I) →
|
||||
-- let u = λ k → λ where
|
||||
-- (i = i0) → Acontr y (~ j)
|
||||
-- (i = i1) → Bcontr y j
|
||||
-- (j = i0) → a≡b i
|
||||
-- (j = i1) → {! y i !}
|
||||
-- in hfill u (inS (a≡b {! j !})) j
|
||||
-- in {! !}
|
||||
|
||||
|
||||
lemma (suc zero) (A , A-prop) (B , B-prop) x y i j = {! !}
|
||||
|
@ -85,4 +105,4 @@ lemma (suc (suc n)) x y = {! !}
|
|||
-- -- (glue (λ { (i = i1) → {! !} }) {! !})
|
||||
-- -- (glue (λ { (i = i0) → a ; (i = i1) → b }) b))
|
||||
-- lemma (suc n) x y = {! !}
|
||||
|
||||
|
Loading…
Reference in a new issue