more wip on ch 6

This commit is contained in:
Michael Zhang 2024-07-16 18:19:39 -04:00
parent 730eeffd75
commit c6bc5bd952
2 changed files with 53 additions and 1 deletions

View file

@ -259,7 +259,56 @@ module S² where
S² : Set
base : S²
surf : refl {x = base} ≡ refl
-- TODO: Define recursion principle
open S² hiding (base)
```
## 6.5 Suspensions
## 6.5 Suspensions
```
module Suspension where
private
variable
A : Set l
postulate
Susp : Set → Set
N : Susp A
S : Susp A
merid : A → (N {A} ≡ S {A})
rec-Susp : {B : Set l} → (n s : B) → (m : A → n ≡ s) → Susp A → B
rec-Susp-N : {B : Set l} → (n s : B) → (m : A → n ≡ s) → rec-Susp n s m N ≡ n
rec-Susp-S : {B : Set l} → (n s : B) → (m : A → n ≡ s) → rec-Susp n s m S ≡ s
{-# REWRITE rec-Susp-N #-}
{-# REWRITE rec-Susp-S #-}
rec-Susp-merid : {B : Set l} (n s : B) → (m : A → n ≡ s) → (a : A) → ap (rec-Susp n s m) (merid a) ≡ m a
open Suspension public
```
### Lemma 6.5.1
```
lemma6∙5∙1 : Susp 𝟚 ≃ S¹
lemma6∙5∙1 = f , qinv-to-isequiv (mkQinv g forward backward)
where
open S¹
m : 𝟚 → base ≡ base
m true = refl
m false = loop
f : Susp 𝟚 → S¹
f s = rec-Susp base base m s
g : S¹ → Susp 𝟚
g s = rec-S¹ N (merid false ∙ sym (merid true)) s
forward : (f ∘ g) id
forward x = rec-S¹ {P = λ x → f (g x) ≡ x} refl {! refl !} x
backward : (g ∘ f) id
backward x = {! !}
```

View file

@ -0,0 +1,3 @@
```
module HottBook.Chapter6Exercises where
```