more wip on ch 6
This commit is contained in:
parent
730eeffd75
commit
c6bc5bd952
2 changed files with 53 additions and 1 deletions
|
@ -259,7 +259,56 @@ module S² where
|
|||
S² : Set
|
||||
base : S²
|
||||
surf : refl {x = base} ≡ refl
|
||||
|
||||
-- TODO: Define recursion principle
|
||||
open S² hiding (base)
|
||||
```
|
||||
|
||||
## 6.5 Suspensions
|
||||
## 6.5 Suspensions
|
||||
|
||||
```
|
||||
module Suspension where
|
||||
private
|
||||
variable
|
||||
A : Set l
|
||||
|
||||
postulate
|
||||
Susp : Set → Set
|
||||
N : Susp A
|
||||
S : Susp A
|
||||
merid : A → (N {A} ≡ S {A})
|
||||
|
||||
rec-Susp : {B : Set l} → (n s : B) → (m : A → n ≡ s) → Susp A → B
|
||||
rec-Susp-N : {B : Set l} → (n s : B) → (m : A → n ≡ s) → rec-Susp n s m N ≡ n
|
||||
rec-Susp-S : {B : Set l} → (n s : B) → (m : A → n ≡ s) → rec-Susp n s m S ≡ s
|
||||
{-# REWRITE rec-Susp-N #-}
|
||||
{-# REWRITE rec-Susp-S #-}
|
||||
|
||||
rec-Susp-merid : {B : Set l} (n s : B) → (m : A → n ≡ s) → (a : A) → ap (rec-Susp n s m) (merid a) ≡ m a
|
||||
open Suspension public
|
||||
```
|
||||
|
||||
### Lemma 6.5.1
|
||||
|
||||
```
|
||||
lemma6∙5∙1 : Susp 𝟚 ≃ S¹
|
||||
lemma6∙5∙1 = f , qinv-to-isequiv (mkQinv g forward backward)
|
||||
where
|
||||
open S¹
|
||||
|
||||
m : 𝟚 → base ≡ base
|
||||
m true = refl
|
||||
m false = loop
|
||||
|
||||
f : Susp 𝟚 → S¹
|
||||
f s = rec-Susp base base m s
|
||||
|
||||
g : S¹ → Susp 𝟚
|
||||
g s = rec-S¹ N (merid false ∙ sym (merid true)) s
|
||||
|
||||
forward : (f ∘ g) ∼ id
|
||||
forward x = rec-S¹ {P = λ x → f (g x) ≡ x} refl {! refl !} x
|
||||
|
||||
backward : (g ∘ f) ∼ id
|
||||
backward x = {! !}
|
||||
```
|
||||
|
|
3
src/HottBook/Chapter6Exercises.lagda.md
Normal file
3
src/HottBook/Chapter6Exercises.lagda.md
Normal file
|
@ -0,0 +1,3 @@
|
|||
```
|
||||
module HottBook.Chapter6Exercises where
|
||||
```
|
Loading…
Reference in a new issue