nya
This commit is contained in:
parent
50d8ce8453
commit
c8ddc593bc
3 changed files with 40 additions and 8 deletions
|
@ -10,6 +10,8 @@
|
|||
- [Chapter 4](./generated/HottBook.Chapter4.md)
|
||||
- [Chapter 5](./generated/HottBook.Chapter5.md)
|
||||
- [Chapter 6](./generated/HottBook.Chapter6.md)
|
||||
- [Chapter 7](./generated/HottBook.Chapter7.md)
|
||||
- [Chapter 8](./generated/HottBook.Chapter8.md)
|
||||
|
||||
# HoTT Book (Cubical formulation)
|
||||
|
||||
|
|
|
@ -96,19 +96,22 @@ pointed l = Σ (Set l) (λ A → A)
|
|||
### Definition 2.1.8 (loop space)
|
||||
|
||||
```
|
||||
Ω : {l : Level} → pointed l → pointed l
|
||||
Ω (A , a) = (a ≡ a) , refl
|
||||
Ω : {l : Level} → pointed l → Set l
|
||||
Ω (A , a) = a ≡ a
|
||||
```
|
||||
|
||||
### Theorem 2.1.6 (Eckmann-Hilton)
|
||||
|
||||
```
|
||||
module theorem2∙1∙6 where
|
||||
Ω² : {l : Level} → pointed l → pointed l
|
||||
Ω² p = Ω (Ω p)
|
||||
Ω² : {l : Level} → pointed l → Set l
|
||||
Ω² p = Ω (Ω p , refl)
|
||||
|
||||
-- compose : {l : Level} {p : pointed {l}} → (Ω² p) × (Ω² p) → Ω² p
|
||||
-- compose a b = ?
|
||||
compose : {l : Level} {p : pointed l} → (Ω² p) × (Ω² p) → Ω² p
|
||||
compose (a , b) = a ∙ b
|
||||
|
||||
-- commute : {l : Level} {p : pointed l} → (α β : Ω² p) → α ∙ β ≡ β ∙ α
|
||||
-- commute {l} {p @ (A , a₀)} α β = {! !}
|
||||
```
|
||||
|
||||
## 2.2 Functions are functors
|
||||
|
@ -312,6 +315,7 @@ lemma2∙4∙3 {A} {B} {f} {g} H {x} {y} refl =
|
|||
-- → H (f x) ≡ ap f (H x)
|
||||
-- corollary2∙4∙4 {A} {f} {H} x =
|
||||
-- let g p = H x in
|
||||
-- -- let naturality = lemma2∙4∙3 H x in
|
||||
-- {! !}
|
||||
```
|
||||
|
||||
|
@ -1043,4 +1047,31 @@ theorem2∙15∙5 {X = X} {A = A} {B = B} = qinv-to-isequiv (mkQinv g forward ba
|
|||
backward : (f : (x : X) → A x × B x) → g (equation2∙15∙4 f) ≡ f
|
||||
backward f = funext λ x → refl
|
||||
where open axiom2∙9∙3
|
||||
```
|
||||
```
|
||||
|
||||
### Equation 2.15.6
|
||||
|
||||
```
|
||||
equation2∙15∙6 : {X : Set} {A : X → Set} {P : (x : X) → A x → Set}
|
||||
→ ((x : X) → Σ (A x) (P x))
|
||||
→ Σ ((x : X) → A x) (λ g → (x : X) → P x (g x))
|
||||
equation2∙15∙6 f = (λ x → fst (f x)) , λ x → snd (f x)
|
||||
```
|
||||
|
||||
### Theorem 2.15.7
|
||||
|
||||
```
|
||||
theorem2∙15∙7 : {X : Set} {A : X → Set} {P : (x : X) → A x → Set} → isequiv (equation2∙15∙6 {X = X} {A = A} {P = P})
|
||||
theorem2∙15∙7 {X} {A} {P} = qinv-to-isequiv (mkQinv g forward backward)
|
||||
where
|
||||
open axiom2∙9∙3
|
||||
|
||||
g : Σ ((x : X) → A x) (λ g → (x : X) → P x (g x)) → (x : X) → Σ (A x) (P x)
|
||||
g (f1 , f2) x = f1 x , f2 x
|
||||
|
||||
forward : (equation2∙15∙6 ∘ g) ∼ id
|
||||
forward (f1 , f2) = Σ-≡ (refl , refl)
|
||||
|
||||
backward : (g ∘ equation2∙15∙6) ∼ id
|
||||
backward f = funext λ x → refl
|
||||
```
|
|
@ -357,7 +357,6 @@ lemma6∙5∙1 = f , qinv-to-isequiv (mkQinv g forward backward)
|
|||
|
||||
goal2 : (y : 𝟚) → {! !} ∙ refl ∙ {! !} ≡ merid true
|
||||
goal y = {! !}
|
||||
|
||||
```
|
||||
|
||||
### Definition 6.5.2
|
||||
|
|
Loading…
Reference in a new issue