progress
This commit is contained in:
parent
009304a28d
commit
d2d19f42bd
2 changed files with 63 additions and 7 deletions
|
@ -4,6 +4,7 @@ module ThesisWork.Pi3S2.Lemma4-1-5 where
|
|||
|
||||
open import Cubical.Data.Sigma
|
||||
open import Cubical.Foundations.Equiv
|
||||
open import Cubical.Foundations.GroupoidLaws
|
||||
open import Cubical.Foundations.Equiv.Properties
|
||||
open import Cubical.Foundations.Isomorphism
|
||||
open import Cubical.Foundations.Pointed
|
||||
|
@ -23,14 +24,69 @@ lemma {A∙ = A∙ @ (A , a0)} {B∙ = B∙ @ (B , b0)} f∙ @ (f , f-eq) = eqv
|
|||
eqv : fst (fiberF ((λ r → fst r) , refl)) ≃ fst (Ω B∙)
|
||||
eqv =
|
||||
fst (fiberF ((λ r → fst r) , refl))
|
||||
≃⟨ {! !} ⟩
|
||||
≃⟨ idEquiv (fst (fiberF (fst , refl))) ⟩
|
||||
Σ (fst (fiberF f∙)) (λ fibf @ (a , p) → a ≡ a0)
|
||||
≃⟨ {! !} ⟩
|
||||
≃⟨ helper1 ⟩
|
||||
Σ A (λ a → (a ≡ a0) × (f a ≡ b0))
|
||||
≃⟨ {! !} ⟩
|
||||
≃⟨ helper2 ⟩
|
||||
f a0 ≡ b0
|
||||
≃⟨ {! !} ⟩
|
||||
≃⟨ helper3 ⟩
|
||||
b0 ≡ b0
|
||||
≃⟨ idEquiv (b0 ≡ b0) ⟩
|
||||
fst (Ω B∙)
|
||||
■
|
||||
■ where
|
||||
helper1 : Σ (fst (fiberF (f , f-eq))) (λ fibf → fibf .fst ≡ a0) ≃ Σ A (λ a → (a ≡ a0) × (f a ≡ b0))
|
||||
helper1 = isoToEquiv (iso f' g' (λ _ → refl) λ _ → refl) where
|
||||
f' : Σ (fst (fiberF (f , f-eq))) (λ fibf → fibf .fst ≡ a0) → Σ A (λ a → (a ≡ a0) × (f a ≡ b0))
|
||||
f' x @ ((x1 , x2) , x3) = x1 , x3 , x2
|
||||
|
||||
g' : Σ A (λ a → (a ≡ a0) × (f a ≡ b0)) → Σ (fst (fiberF (f , f-eq))) (λ fibf → fibf .fst ≡ a0)
|
||||
g' x @ (x1 , x2 , x3) = (x1 , x3) , x2
|
||||
|
||||
helper2 : Σ A (λ a → (a ≡ a0) × (f a ≡ b0)) ≃ (f a0 ≡ b0)
|
||||
helper2 = isoToEquiv (iso f' g' fg {! !}) where
|
||||
f' : Σ A (λ a → (a ≡ a0) × (f a ≡ b0)) → f a0 ≡ b0
|
||||
f' (x1 , x2 , x3) = cong f (sym x2) ∙ x3
|
||||
|
||||
g' : f a0 ≡ b0 → Σ A (λ a → (a ≡ a0) × (f a ≡ b0))
|
||||
g' x = a0 , refl , x
|
||||
|
||||
fg : section f' g'
|
||||
fg b =
|
||||
f' (g' b) ≡⟨ refl ⟩
|
||||
f' (a0 , refl , b) ≡⟨ refl ⟩
|
||||
cong f (sym refl) ∙ b ≡⟨ refl ⟩
|
||||
refl ∙ b ≡⟨ sym (lUnit b) ⟩
|
||||
b ∎
|
||||
|
||||
gf : retract f' g'
|
||||
gf a @ (x1 , x2 , x3) =
|
||||
g' (cong f (sym x2) ∙ x3) ≡⟨ refl ⟩
|
||||
a0 , refl , (cong f (sym x2) ∙ x3) ≡⟨ cong (λ b → {! !}) {! !} ⟩
|
||||
a ∎
|
||||
|
||||
helper3 : (f a0 ≡ b0) ≃ (b0 ≡ b0)
|
||||
helper3 = isoToEquiv (iso f' g' fg gf) where
|
||||
f' : f a0 ≡ b0 → b0 ≡ b0
|
||||
f' x = sym f-eq ∙ x
|
||||
|
||||
g' : b0 ≡ b0 → f a0 ≡ b0
|
||||
g' x = f-eq ∙ x
|
||||
|
||||
fg : section f' g'
|
||||
fg b =
|
||||
f' (g' b) ≡⟨ refl ⟩
|
||||
f' (f-eq ∙ b) ≡⟨ refl ⟩
|
||||
sym f-eq ∙ (f-eq ∙ b) ≡⟨ assoc (sym f-eq) f-eq b ⟩
|
||||
(sym f-eq ∙ f-eq) ∙ b ≡⟨ cong (_∙ b) (lCancel f-eq) ⟩
|
||||
refl ∙ b ≡⟨ sym (lUnit b) ⟩
|
||||
b ∎
|
||||
|
||||
gf : retract f' g'
|
||||
gf a =
|
||||
g' (f' a) ≡⟨ refl ⟩
|
||||
g' (sym f-eq ∙ a) ≡⟨ refl ⟩
|
||||
f-eq ∙ (sym f-eq ∙ a) ≡⟨ assoc f-eq (sym f-eq) a ⟩
|
||||
(f-eq ∙ sym f-eq) ∙ a ≡⟨ cong (_∙ a) (rCancel f-eq) ⟩
|
||||
refl ∙ a ≡⟨ sym (lUnit a) ⟩
|
||||
a ∎
|
|
@ -3,7 +3,7 @@
|
|||
module ThesisWork.Pi3S2.SuccStr where
|
||||
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Data.Nat
|
||||
open import Data.Nat using (ℕ ; zero ; suc)
|
||||
|
||||
SuccStr : (I : Type) (S : I → I) → (i : I) → (n : ℕ) → I
|
||||
SuccStr I S i zero = i
|
||||
|
@ -17,7 +17,7 @@ module _ where
|
|||
ℕ-SuccStr = SuccStr ℕ suc
|
||||
|
||||
module _ where
|
||||
open import Data.Integer renaming (suc to zsuc)
|
||||
open import Data.Integer using (ℤ) renaming (suc to zsuc)
|
||||
|
||||
-- (ℤ , λ n . n + 1)
|
||||
ℤ-SuccStr : (i : ℤ) → (n : ℕ) → ℤ
|
||||
|
|
Loading…
Reference in a new issue