This commit is contained in:
Michael Zhang 2024-10-16 17:50:43 -05:00
parent 009304a28d
commit d2d19f42bd
2 changed files with 63 additions and 7 deletions

View file

@ -4,6 +4,7 @@ module ThesisWork.Pi3S2.Lemma4-1-5 where
open import Cubical.Data.Sigma
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Pointed
@ -23,14 +24,69 @@ lemma {A∙ = A∙ @ (A , a0)} {B∙ = B∙ @ (B , b0)} f∙ @ (f , f-eq) = eqv
eqv : fst (fiberF ((λ r fst r) , refl)) fst (Ω B∙)
eqv =
fst (fiberF ((λ r fst r) , refl))
≃⟨ {! !}
≃⟨ idEquiv (fst (fiberF (fst , refl)))
Σ (fst (fiberF f∙)) (λ fibf @ (a , p) a a0)
≃⟨ {! !}
≃⟨ helper1
Σ A (λ a (a a0) × (f a b0))
≃⟨ {! !}
≃⟨ helper2
f a0 b0
≃⟨ {! !}
≃⟨ helper3
b0 b0
≃⟨ idEquiv (b0 b0)
fst (Ω B∙)
where
helper1 : Σ (fst (fiberF (f , f-eq))) (λ fibf fibf .fst a0) Σ A (λ a (a a0) × (f a b0))
helper1 = isoToEquiv (iso f' g' (λ _ refl) λ _ refl) where
f' : Σ (fst (fiberF (f , f-eq))) (λ fibf fibf .fst a0) Σ A (λ a (a a0) × (f a b0))
f' x @ ((x1 , x2) , x3) = x1 , x3 , x2
g' : Σ A (λ a (a a0) × (f a b0)) Σ (fst (fiberF (f , f-eq))) (λ fibf fibf .fst a0)
g' x @ (x1 , x2 , x3) = (x1 , x3) , x2
helper2 : Σ A (λ a (a a0) × (f a b0)) (f a0 b0)
helper2 = isoToEquiv (iso f' g' fg {! !}) where
f' : Σ A (λ a (a a0) × (f a b0)) f a0 b0
f' (x1 , x2 , x3) = cong f (sym x2) x3
g' : f a0 b0 Σ A (λ a (a a0) × (f a b0))
g' x = a0 , refl , x
fg : section f' g'
fg b =
f' (g' b) ≡⟨ refl
f' (a0 , refl , b) ≡⟨ refl
cong f (sym refl) b ≡⟨ refl
refl b ≡⟨ sym (lUnit b)
b
gf : retract f' g'
gf a @ (x1 , x2 , x3) =
g' (cong f (sym x2) x3) ≡⟨ refl
a0 , refl , (cong f (sym x2) x3) ≡⟨ cong (λ b {! !}) {! !}
a
helper3 : (f a0 b0) (b0 b0)
helper3 = isoToEquiv (iso f' g' fg gf) where
f' : f a0 b0 b0 b0
f' x = sym f-eq x
g' : b0 b0 f a0 b0
g' x = f-eq x
fg : section f' g'
fg b =
f' (g' b) ≡⟨ refl
f' (f-eq b) ≡⟨ refl
sym f-eq (f-eq b) ≡⟨ assoc (sym f-eq) f-eq b
(sym f-eq f-eq) b ≡⟨ cong (_∙ b) (lCancel f-eq)
refl b ≡⟨ sym (lUnit b)
b
gf : retract f' g'
gf a =
g' (f' a) ≡⟨ refl
g' (sym f-eq a) ≡⟨ refl
f-eq (sym f-eq a) ≡⟨ assoc f-eq (sym f-eq) a
(f-eq sym f-eq) a ≡⟨ cong (_∙ a) (rCancel f-eq)
refl a ≡⟨ sym (lUnit a)
a

View file

@ -3,7 +3,7 @@
module ThesisWork.Pi3S2.SuccStr where
open import Cubical.Foundations.Prelude
open import Data.Nat
open import Data.Nat using ( ; zero ; suc)
SuccStr : (I : Type) (S : I I) (i : I) (n : ) I
SuccStr I S i zero = i
@ -17,7 +17,7 @@ module _ where
-SuccStr = SuccStr suc
module _ where
open import Data.Integer renaming (suc to zsuc)
open import Data.Integer using () renaming (suc to zsuc)
-- ( , λ n . n + 1)
-SuccStr : (i : ) (n : )