auto gitdoc commit

This commit is contained in:
Michael Zhang 2024-04-22 03:34:11 +00:00
parent 7dfdab1973
commit d48ae4c0c8

View file

@ -260,7 +260,27 @@ A ≃ B = Σ[ f ∈ (A → B) ] isequiv f
```
theorem2∙8∙1 : (x y : 𝟙) → (x ≡ y) ≃ 𝟙
theorem2∙8∙1 = {! !}
theorem2∙8∙1 x y = func x y , equiv x y
where
func : (x y : 𝟙) → (x ≡ y) → 𝟙
func x y _ = tt
rev : (x y : 𝟙) → 𝟙 → (x ≡ y)
rev tt tt _ = refl
forward : (x y : 𝟙) → (func x y ∘ rev x y) id
forward tt tt refl = refl
backward : (x y : 𝟙) → (rev x y ∘ func x y) id
backward tt tt tt = refl
equiv : (x y : 𝟙) → isequiv (func x y)
equiv x y = record
{ g = rev x y
; g-id = forward x y
; h = rev x y
; h-id = backward x y
}
```
## 2.9 Π-types and the function extensionality axiom
@ -373,7 +393,7 @@ theorem2∙13∙1 m n = encode m n , equiv
c (suc x) = ap (λ p → ap suc p) (c x)
backward : (m n : ) → (c : code m n) → (decode m n ∘ encode m n) c ≡ id c
backward zero zero c = {! refl !}
backward zero zero c = {! !}
backward (suc m) (suc n) c = {! !}
equiv = record