auto gitdoc commit
This commit is contained in:
parent
7dfdab1973
commit
d48ae4c0c8
1 changed files with 22 additions and 2 deletions
|
@ -260,7 +260,27 @@ A ≃ B = Σ[ f ∈ (A → B) ] isequiv f
|
|||
|
||||
```
|
||||
theorem2∙8∙1 : (x y : 𝟙) → (x ≡ y) ≃ 𝟙
|
||||
theorem2∙8∙1 = {! !}
|
||||
theorem2∙8∙1 x y = func x y , equiv x y
|
||||
where
|
||||
func : (x y : 𝟙) → (x ≡ y) → 𝟙
|
||||
func x y _ = tt
|
||||
|
||||
rev : (x y : 𝟙) → 𝟙 → (x ≡ y)
|
||||
rev tt tt _ = refl
|
||||
|
||||
forward : (x y : 𝟙) → (func x y ∘ rev x y) ∼ id
|
||||
forward tt tt refl = refl
|
||||
|
||||
backward : (x y : 𝟙) → (rev x y ∘ func x y) ∼ id
|
||||
backward tt tt tt = refl
|
||||
|
||||
equiv : (x y : 𝟙) → isequiv (func x y)
|
||||
equiv x y = record
|
||||
{ g = rev x y
|
||||
; g-id = forward x y
|
||||
; h = rev x y
|
||||
; h-id = backward x y
|
||||
}
|
||||
```
|
||||
|
||||
## 2.9 Π-types and the function extensionality axiom
|
||||
|
@ -373,7 +393,7 @@ theorem2∙13∙1 m n = encode m n , equiv
|
|||
c (suc x) = ap (λ p → ap suc p) (c x)
|
||||
|
||||
backward : (m n : ℕ) → (c : code m n) → (decode m n ∘ encode m n) c ≡ id c
|
||||
backward zero zero c = {! refl !}
|
||||
backward zero zero c = {! !}
|
||||
backward (suc m) (suc n) c = {! !}
|
||||
|
||||
equiv = record
|
||||
|
|
Loading…
Reference in a new issue