2.4.8
This commit is contained in:
parent
4af035f713
commit
fabb22e855
1 changed files with 8 additions and 16 deletions
|
@ -337,31 +337,23 @@ id-qinv = mkQinv id (λ _ → refl) (λ _ → refl)
|
|||
|
||||
```
|
||||
module example2∙4∙8 where
|
||||
private
|
||||
variable
|
||||
A : Set
|
||||
x y z : A
|
||||
|
||||
i : (p : x ≡ y) → qinv (p ∙_)
|
||||
i p = mkQinv g forward backward
|
||||
i : {A : Set} → {x y z : A} → (p : x ≡ y) → qinv (p ∙_)
|
||||
i {A} {x} {y} {z} p = mkQinv g forward backward
|
||||
where
|
||||
g = (sym p) ∙_
|
||||
forward : (_∙_ p ∘ g) ∼ id
|
||||
forward q = lemma2∙1∙4.iv p (sym p) q ∙ ap (_∙ q) (lemma2∙1∙4.ii2 p) ∙ sym (lemma2∙1∙4.i2 q)
|
||||
-- backward : (g ∘ (_∙_ p)) ∼ id
|
||||
backward : {y z : A} → (q : {! y ≡ z !}) → {! !} ≡ q
|
||||
-- sym p ∙ (q ∙ p) ≡ q
|
||||
backward q = {! !}
|
||||
backward : (q : y ≡ z) → sym p ∙ (p ∙ q) ≡ q
|
||||
backward q = lemma2∙1∙4.iv (sym p) p q ∙ ap (_∙ q) (lemma2∙1∙4.ii1 p) ∙ sym (lemma2∙1∙4.i2 q)
|
||||
|
||||
ii : (p : x ≡ y) → qinv (_∙ p)
|
||||
ii p = mkQinv g forward backward
|
||||
ii : {A : Set} → {x y z : A} → (p : x ≡ y) → qinv (_∙ p)
|
||||
ii {A} {x} {y} {z} p = mkQinv g forward backward
|
||||
where
|
||||
g : z ≡ y → z ≡ x
|
||||
g = _∙ (sym p)
|
||||
forward : (_∙ p ∘ g) ∼ id
|
||||
-- (q ∙ sym(p)) ∙ p ≡ q
|
||||
forward q = sym (lemma2∙1∙4.iv q (sym p) p) ∙ ap (q ∙_) (lemma2∙1∙4.ii1 p) ∙ sym (lemma2∙1∙4.i1 q)
|
||||
backward : (g ∘ _∙ p) ∼ id
|
||||
-- (q ∙ p) ∙ (sym p) ≡ q
|
||||
backward q = sym (lemma2∙1∙4.iv q p (sym p)) ∙ ap (q ∙_) (lemma2∙1∙4.ii2 p) ∙ sym (lemma2∙1∙4.i1 q)
|
||||
```
|
||||
|
||||
|
@ -1039,4 +1031,4 @@ theorem2∙15∙5 {X = X} {A = A} {B = B} = qinv-to-isequiv (mkQinv g forward ba
|
|||
backward : (f : (x : X) → A x × B x) → g (equation2∙15∙4 f) ≡ f
|
||||
backward f = funext λ x → refl
|
||||
where open axiom2∙9∙3
|
||||
```
|
||||
```
|
Loading…
Reference in a new issue