Formalize section 4.1, proving π₃(S²) ≃ ℤ #35

Open
opened 2024-10-15 05:06:29 +00:00 by michael · 0 comments
Owner
  • Define LES. #25
  • Theorem 4.1.10 (Hopf fibration). #28
  • Corollary 4.1.11, part 1. (\pi_2(S^2) = \mathbb{Z})
  • Corollary 4.1.11, part 2. (\pi_n(S^3) = \pi_n(S^2))
  • Theorem 4.1.12 (Freudenthal Suspension Theorem)
  • Corollary 4.1.13, part 1. (\pi_n(S^n) = \mathbb{Z})
  • Corollary 4.1.13, part 2. (\pi_3(S^2) = \mathbb{Z})
- [ ] Define LES. #25 - [ ] Theorem 4.1.10 (Hopf fibration). #28 - [ ] Corollary 4.1.11, part 1. ($\pi_2(S^2) = \mathbb{Z}$) - [ ] Corollary 4.1.11, part 2. ($\pi_n(S^3) = \pi_n(S^2)$) - [ ] Theorem 4.1.12 (Freudenthal Suspension Theorem) - [ ] Corollary 4.1.13, part 1. ($\pi_n(S^n) = \mathbb{Z}$) - [ ] Corollary 4.1.13, part 2. ($\pi_3(S^2) = \mathbb{Z}$)
michael added this to the research project 2024-10-15 05:06:29 +00:00
michael changed title from Formalize section 4.1, proving pi_3(S^2) = Z to Formalize section 4.1, proving π₃(S²) ≃ ℤ 2024-10-16 06:34:01 +00:00
michael added the
spectral
label 2024-12-31 18:57:03 +00:00
Sign in to join this conversation.
No milestone
No project
No assignees
1 participant
Notifications
Due date
The due date is invalid or out of range. Please use the format "yyyy-mm-dd".

No due date set.

Dependencies

No dependencies set.

Reference: michael/type-theory#35
No description provided.