28 lines
644 B
Agda
28 lines
644 B
Agda
|
module Exercises1 where
|
|||
|
|
|||
|
open import Agda.Primitive
|
|||
|
|
|||
|
open import foundation-core.empty-types
|
|||
|
open import foundation-core.equivalences
|
|||
|
open import foundation-core.negation
|
|||
|
open import foundation.dependent-pair-types
|
|||
|
open import foundation.identity-types
|
|||
|
open import foundation.univalence
|
|||
|
open import foundation.sections
|
|||
|
open import foundation.retractions
|
|||
|
|
|||
|
_≡_ = _=_
|
|||
|
⊥ = empty
|
|||
|
|
|||
|
equal-to-zero : {A : Set} (f : ¬ A) → A ≡ ⊥
|
|||
|
equal-to-zero {A} f = eq-equiv A ⊥ eqv
|
|||
|
where
|
|||
|
s : section f
|
|||
|
s = (λ ()) , λ x → ex-falso x
|
|||
|
|
|||
|
r : retraction f
|
|||
|
r = (λ ()) , λ x → ex-falso (f x)
|
|||
|
|
|||
|
eqv : A ≃ ⊥
|
|||
|
eqv = f , s , r
|