frap/EvaluationContexts.v

297 lines
8.4 KiB
Coq
Raw Normal View History

(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 12: More on Evaluation Contexts
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap.
2021-03-28 00:26:37 +00:00
(** * Evaluation Contexts for Lambda Calculus *)
(* Let's revisit the typed language from the end of the previous chapter, this
* time casting its small-step semantics using evaluation contexts. *)
Module Stlc.
Inductive exp : Set :=
| Var (x : var)
| Const (n : nat)
| Plus (e1 e2 : exp)
| Abs (x : var) (e1 : exp)
| App (e1 e2 : exp).
Inductive value : exp -> Prop :=
| VConst : forall n, value (Const n)
| VAbs : forall x e1, value (Abs x e1).
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
match e2 with
| Var y => if y ==v x then e1 else Var y
| Const n => Const n
| Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'')
| Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2')
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
end.
2021-03-28 00:26:37 +00:00
(* Here's the first difference from last chapter. This is our grammar of
* contexts. Note a difference from the book: we don't enforce here that
* the first argument of a [Plus1] or [App1] is a value, but rather that
* constraint comes in the next relation definition. *)
Inductive context : Set :=
| Hole : context
| Plus1 : context -> exp -> context
| Plus2 : exp -> context -> context
| App1 : context -> exp -> context
| App2 : exp -> context -> context.
2021-03-28 00:26:37 +00:00
(* Again, note how two of the rules include [value] premises. *)
Inductive plug : context -> exp -> exp -> Prop :=
| PlugHole : forall e, plug Hole e e
| PlugPlus1 : forall e e' C e2,
plug C e e'
-> plug (Plus1 C e2) e (Plus e' e2)
| PlugPlus2 : forall e e' v1 C,
value v1
-> plug C e e'
-> plug (Plus2 v1 C) e (Plus v1 e')
| PlugApp1 : forall e e' C e2,
plug C e e'
-> plug (App1 C e2) e (App e' e2)
| PlugApp2 : forall e e' v1 C,
value v1
-> plug C e e'
-> plug (App2 v1 C) e (App v1 e').
(* Small-step, call-by-value evaluation, using our evaluation contexts *)
(* First: the primitive reductions *)
Inductive step0 : exp -> exp -> Prop :=
| Beta : forall x e v,
value v
-> step0 (App (Abs x e) v) (subst v x e)
| Add : forall n1 n2,
step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)).
(* Then: running them in context *)
Inductive step : exp -> exp -> Prop :=
| StepRule : forall C e1 e2 e1' e2',
plug C e1 e1'
-> plug C e2 e2'
-> step0 e1 e2
-> step e1' e2'.
(* It's easy to wrap everything as a transition system. *)
Definition trsys_of (e : exp) := {|
Initial := {e};
Step := step
|}.
(* Typing details are the same as last chapter. *)
Inductive type :=
| Nat (* Numbers *)
| Fun (dom ran : type) (* Functions *).
Inductive hasty : fmap var type -> exp -> type -> Prop :=
| HtVar : forall G x t,
G $? x = Some t
-> hasty G (Var x) t
| HtConst : forall G n,
hasty G (Const n) Nat
| HtPlus : forall G e1 e2,
hasty G e1 Nat
-> hasty G e2 Nat
-> hasty G (Plus e1 e2) Nat
| HtAbs : forall G x e1 t1 t2,
hasty (G $+ (x, t1)) e1 t2
-> hasty G (Abs x e1) (Fun t1 t2)
| HtApp : forall G e1 e2 t1 t2,
hasty G e1 (Fun t1 t2)
-> hasty G e2 t1
-> hasty G (App e1 e2) t2.
Local Hint Constructors value plug step0 step hasty : core.
Infix "-->" := Fun (at level 60, right associativity).
Coercion Const : nat >-> exp.
Infix "^+^" := Plus (at level 50).
Coercion Var : var >-> exp.
Notation "\ x , e" := (Abs x e) (at level 51).
Infix "@" := App (at level 49, left associativity).
(** * Now we adapt the automated proof of type soundness. *)
Ltac t0 := match goal with
| [ H : ex _ |- _ ] => invert H
| [ H : _ /\ _ |- _ ] => invert H
| [ |- context[?x ==v ?y] ] => cases (x ==v y)
| [ H : Some _ = Some _ |- _ ] => invert H
| [ H : step _ _ |- _ ] => invert H
| [ H : step0 _ _ |- _ ] => invert1 H
| [ H : hasty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H
| [ H : hasty _ _ _ |- _ ] => invert1 H
| [ H : plug _ _ _ |- _ ] => invert1 H
end; subst.
Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 6.
Lemma progress : forall e t,
hasty $0 e t
-> value e
\/ (exists e' : exp, step e e').
Proof.
induct 1; t.
Qed.
Lemma weakening_override : forall (G G' : fmap var type) x t,
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
-> (forall x' t', G $+ (x, t) $? x' = Some t'
-> G' $+ (x, t) $? x' = Some t').
Proof.
simplify.
cases (x ==v x'); simplify; eauto.
Qed.
Local Hint Resolve weakening_override : core.
Lemma weakening : forall G e t,
hasty G e t
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
-> hasty G' e t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve weakening : core.
(* Replacing a typing context with an equal one has no effect (useful to guide
* proof search as a hint). *)
Lemma hasty_change : forall G e t,
hasty G e t
-> forall G', G' = G
-> hasty G' e t.
Proof.
t.
Qed.
Local Hint Resolve hasty_change : core.
Lemma substitution : forall G x t' e t e',
hasty (G $+ (x, t')) e t
-> hasty $0 e' t'
-> hasty G (subst e' x e) t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve substitution : core.
Lemma preservation0 : forall e1 e2,
step0 e1 e2
-> forall t, hasty $0 e1 t
-> hasty $0 e2 t.
Proof.
invert 1; t.
Qed.
Local Hint Resolve preservation0 : core.
Lemma preservation' : forall C e1 e1',
plug C e1 e1'
-> forall e2 e2' t, plug C e2 e2'
-> step0 e1 e2
-> hasty $0 e1' t
-> hasty $0 e2' t.
Proof.
induct 1; t.
Qed.
Local Hint Resolve preservation' : core.
Lemma preservation : forall e1 e2,
step e1 e2
-> forall t, hasty $0 e1 t
-> hasty $0 e2 t.
Proof.
invert 1; t.
Qed.
Local Hint Resolve progress preservation : core.
Theorem safety : forall e t, hasty $0 e t
-> invariantFor (trsys_of e)
(fun e' => value e'
\/ exists e'', step e' e'').
Proof.
simplify.
apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t); eauto.
apply invariant_induction; simplify; eauto; equality.
Qed.
2021-03-28 00:26:37 +00:00
(* It may not be obvious that this way of defining the semantics gives us a
* unique evaluation sequence for every well-typed program. Let's prove
* it. *)
Lemma plug_not_value : forall C e v,
value v
-> plug C e v
-> C = Hole /\ e = v.
Proof.
invert 1; invert 1; auto.
Qed.
Lemma step0_value : forall v e,
value v
-> step0 v e
-> False.
Proof.
invert 1; invert 1.
Qed.
Lemma plug_det : forall C e1 e2 e1' f1 f1',
step0 e1 e1'
-> step0 f1 f1'
-> plug C e1 e2
-> forall C', plug C' f1 e2
-> C = C' /\ e1 = f1.
Proof.
induct 3; invert 1;
repeat match goal with
| [ H : step0 _ _ |- _ ] => invert1 H
| [ H : plug _ _ _ |- _ ] => eapply plug_not_value in H; [ | solve [ eauto ] ];
propositional; subst
| [ IH : step0 _ _ -> _, H : plug _ _ _ |- _ ] => eapply IH in H; [ | solve [ auto ] ];
equality
| [ _ : value ?v, _ : step0 ?v _ |- _ ] => exfalso; eapply step0_value; eauto
end; equality.
Qed.
Lemma step0_det : forall e e', step0 e e'
-> forall e'', step0 e e''
-> e' = e''.
Proof.
invert 1; invert 1; auto.
Qed.
Lemma plug_func : forall C e e1,
plug C e e1
-> forall e2, plug C e e2
-> e1 = e2.
Proof.
induct 1; invert 1; auto; f_equal; auto.
Qed.
Theorem deterministic : forall e e', step e e'
-> forall e'', step e e''
-> e' = e''.
Proof.
invert 1; invert 1.
assert (C = C0 /\ e1 = e0) by (eapply plug_det; eassumption).
propositional; subst.
assert (e2 = e3) by (eapply step0_det; eassumption).
subst.
eapply plug_func; eassumption.
Qed.
End Stlc.