frap/SessionTypes.v

204 lines
5.2 KiB
Coq
Raw Normal View History

2018-05-12 18:53:37 +00:00
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 20: Session Types
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap MessagesAndRefinement.
Set Implicit Arguments.
Set Asymmetric Patterns.
(** * Defining the Type System *)
Inductive type :=
| TSend (ch : channel) (A : Set) (t : type)
| TRecv (ch : channel) (A : Set) (t : type)
| TDone
| InternalChoice (t1 t2 : type)
| ExternalChoice (t1 t2 : type).
Delimit Scope st_scope with st.
Bind Scope st_scope with type.
Notation "!!! ch ( A ) ; k" := (TSend ch A k%st) (right associativity, at level 45, ch at level 0) : st_scope.
Notation "??? ch ( A ) ; k" := (TRecv ch A k%st) (right associativity, at level 45, ch at level 0) : st_scope.
Infix "|?|" := InternalChoice (at level 40) : st_scope.
Infix "?|?" := ExternalChoice (at level 40) : st_scope.
Inductive hasty : proc -> type -> Prop :=
| HtSend : forall ch (A : Set) (v : A) k t,
hasty k t
-> hasty (Send ch v k) (TSend ch A t)
| HtRecv : forall ch (A : Set) (k : A -> _) t,
(forall v, hasty (k v) t)
-> hasty (Recv ch k) (TRecv ch A t)
| HtDone :
hasty Done TDone
| HtInternalChoice1 : forall pr t1 t2,
hasty pr t1
-> hasty pr (InternalChoice t1 t2)
| HtInternalChoice2 : forall pr t1 t2,
hasty pr t2
-> hasty pr (InternalChoice t1 t2)
| HtExternalChoice : forall pr t1 t2,
hasty pr t1
-> hasty pr t2
-> hasty pr (ExternalChoice t1 t2).
(** * Examples of Typed Processes *)
(* Recall our first example from last chapter. *)
Definition addN (k : nat) (input output : channel) : proc :=
??input(n : nat);
!!output(n + k);
Done.
Ltac hasty := simplify; repeat (constructor; simplify).
2018-05-12 18:53:37 +00:00
Theorem addN_typed : forall k input output,
hasty (addN k input output) (???input(nat); !!!output(nat); TDone).
Proof.
hasty.
Qed.
(** * Complementing Types *)
Fixpoint complement (t : type) : type :=
match t with
| TSend ch A t1 => TRecv ch A (complement t1)
| TRecv ch A t1 => TSend ch A (complement t1)
| TDone => TDone
| InternalChoice t1 t2 => ExternalChoice (complement t1) (complement t2)
| ExternalChoice t1 t2 => InternalChoice (complement t1) (complement t2)
end.
Definition add2_client (input output : channel) : proc :=
!!input(42);
??output(_ : nat);
Done.
2018-05-12 18:53:37 +00:00
Theorem add2_client_typed : forall input output,
input <> output
-> hasty (add2_client input output) (complement (???input(nat); !!!output(nat); TDone)).
2018-05-12 18:53:37 +00:00
Proof.
hasty.
Qed.
(** * Parallel execution preserves the existence of complementary session types. *)
Definition trsys_of pr := {|
Initial := {pr};
Step := lstepSilent
|}.
(* Note: here we force silent steps, so that all channel communication is
* internal. *)
Hint Constructors hasty.
Lemma hasty_not_NewChannel : forall chs pr t,
hasty (NewChannel chs pr) t
-> False.
Proof.
induct 1; auto.
Qed.
Lemma hasty_not_BlockChannel : forall ch pr t,
hasty (BlockChannel ch pr) t
-> False.
Proof.
induct 1; auto.
Qed.
Lemma hasty_not_Dup : forall pr t,
hasty (Dup pr) t
-> False.
Proof.
induct 1; auto.
Qed.
Lemma hasty_not_Par : forall pr1 pr2 t,
hasty (pr1 || pr2) t
-> False.
Proof.
induct 1; auto.
Qed.
Hint Immediate hasty_not_NewChannel hasty_not_BlockChannel hasty_not_Dup hasty_not_Par.
Lemma input_typed : forall pr ch A v pr',
lstep pr (Input {| Channel := ch; TypeOf := A; Value := v |}) pr'
-> forall t, hasty pr t
-> exists k, pr = Recv ch k /\ pr' = k v.
Proof.
induct 1; simplify; try solve [ exfalso; eauto ].
induct H; eauto.
Qed.
Lemma output_typed : forall pr ch A v pr',
lstep pr (Output {| Channel := ch; TypeOf := A; Value := v |}) pr'
-> forall t, hasty pr t
-> exists k, pr = Send ch v k /\ pr' = k.
Proof.
induct 1; simplify; try solve [ exfalso; eauto ].
induct H; eauto.
Qed.
Lemma complementarity_rendezvous : forall ch (A : Set) (k1 : A -> _) t,
hasty (Recv ch k1) t
-> forall (v : A) k2, hasty (Send ch v k2) (complement t)
-> exists t', hasty (k1 v) t' /\ hasty k2 (complement t').
Proof.
induct 1; invert 1; simplify; eauto.
Qed.
Lemma complement_inverse : forall t,
t = complement (complement t).
Proof.
induct t; simplify; equality.
Qed.
Lemma complementarity_forever : forall pr1 pr2 t,
hasty pr1 t
-> hasty pr2 (complement t)
-> invariantFor (trsys_of (pr1 || pr2))
(fun pr => exists pr1' pr2' t',
pr = pr1' || pr2'
/\ hasty pr1' t'
/\ hasty pr2' (complement t')).
Proof.
simplify.
apply invariant_induction; simplify.
propositional; subst.
eauto 6.
clear pr1 pr2 t H H0.
first_order; subst.
invert H2.
invert H6; try solve [ exfalso; eauto ].
invert H6; try solve [ exfalso; eauto ].
eapply input_typed in H4; eauto.
eapply output_typed in H5; eauto.
first_order; subst.
eapply complementarity_rendezvous in H0; eauto.
first_order.
eapply input_typed in H5; eauto.
eapply output_typed in H4; eauto.
first_order; subst.
rewrite complement_inverse in H0.
eapply complementarity_rendezvous in H1; eauto.
first_order.
rewrite complement_inverse in H.
first_order.
Qed.