mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
203 lines
5.2 KiB
Coq
203 lines
5.2 KiB
Coq
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
|
* Chapter 20: Session Types
|
|
* Author: Adam Chlipala
|
|
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
|
|
|
Require Import Frap MessagesAndRefinement.
|
|
|
|
Set Implicit Arguments.
|
|
Set Asymmetric Patterns.
|
|
|
|
|
|
(** * Defining the Type System *)
|
|
|
|
Inductive type :=
|
|
| TSend (ch : channel) (A : Set) (t : type)
|
|
| TRecv (ch : channel) (A : Set) (t : type)
|
|
| TDone
|
|
|
|
| InternalChoice (t1 t2 : type)
|
|
| ExternalChoice (t1 t2 : type).
|
|
|
|
Delimit Scope st_scope with st.
|
|
Bind Scope st_scope with type.
|
|
Notation "!!! ch ( A ) ; k" := (TSend ch A k%st) (right associativity, at level 45, ch at level 0) : st_scope.
|
|
Notation "??? ch ( A ) ; k" := (TRecv ch A k%st) (right associativity, at level 45, ch at level 0) : st_scope.
|
|
Infix "|?|" := InternalChoice (at level 40) : st_scope.
|
|
Infix "?|?" := ExternalChoice (at level 40) : st_scope.
|
|
|
|
Inductive hasty : proc -> type -> Prop :=
|
|
| HtSend : forall ch (A : Set) (v : A) k t,
|
|
hasty k t
|
|
-> hasty (Send ch v k) (TSend ch A t)
|
|
| HtRecv : forall ch (A : Set) (k : A -> _) t,
|
|
(forall v, hasty (k v) t)
|
|
-> hasty (Recv ch k) (TRecv ch A t)
|
|
| HtDone :
|
|
hasty Done TDone
|
|
|
|
| HtInternalChoice1 : forall pr t1 t2,
|
|
hasty pr t1
|
|
-> hasty pr (InternalChoice t1 t2)
|
|
| HtInternalChoice2 : forall pr t1 t2,
|
|
hasty pr t2
|
|
-> hasty pr (InternalChoice t1 t2)
|
|
| HtExternalChoice : forall pr t1 t2,
|
|
hasty pr t1
|
|
-> hasty pr t2
|
|
-> hasty pr (ExternalChoice t1 t2).
|
|
|
|
|
|
(** * Examples of Typed Processes *)
|
|
|
|
(* Recall our first example from last chapter. *)
|
|
Definition addN (k : nat) (input output : channel) : proc :=
|
|
??input(n : nat);
|
|
!!output(n + k);
|
|
Done.
|
|
|
|
Ltac hasty := simplify; repeat (constructor; simplify).
|
|
|
|
Theorem addN_typed : forall k input output,
|
|
hasty (addN k input output) (???input(nat); !!!output(nat); TDone).
|
|
Proof.
|
|
hasty.
|
|
Qed.
|
|
|
|
|
|
(** * Complementing Types *)
|
|
|
|
Fixpoint complement (t : type) : type :=
|
|
match t with
|
|
| TSend ch A t1 => TRecv ch A (complement t1)
|
|
| TRecv ch A t1 => TSend ch A (complement t1)
|
|
| TDone => TDone
|
|
|
|
| InternalChoice t1 t2 => ExternalChoice (complement t1) (complement t2)
|
|
| ExternalChoice t1 t2 => InternalChoice (complement t1) (complement t2)
|
|
end.
|
|
|
|
Definition add2_client (input output : channel) : proc :=
|
|
!!input(42);
|
|
??output(_ : nat);
|
|
Done.
|
|
|
|
Theorem add2_client_typed : forall input output,
|
|
input <> output
|
|
-> hasty (add2_client input output) (complement (???input(nat); !!!output(nat); TDone)).
|
|
Proof.
|
|
hasty.
|
|
Qed.
|
|
|
|
|
|
(** * Parallel execution preserves the existence of complementary session types. *)
|
|
|
|
Definition trsys_of pr := {|
|
|
Initial := {pr};
|
|
Step := lstepSilent
|
|
|}.
|
|
(* Note: here we force silent steps, so that all channel communication is
|
|
* internal. *)
|
|
|
|
Hint Constructors hasty.
|
|
|
|
Lemma hasty_not_NewChannel : forall chs pr t,
|
|
hasty (NewChannel chs pr) t
|
|
-> False.
|
|
Proof.
|
|
induct 1; auto.
|
|
Qed.
|
|
|
|
Lemma hasty_not_BlockChannel : forall ch pr t,
|
|
hasty (BlockChannel ch pr) t
|
|
-> False.
|
|
Proof.
|
|
induct 1; auto.
|
|
Qed.
|
|
|
|
Lemma hasty_not_Dup : forall pr t,
|
|
hasty (Dup pr) t
|
|
-> False.
|
|
Proof.
|
|
induct 1; auto.
|
|
Qed.
|
|
|
|
Lemma hasty_not_Par : forall pr1 pr2 t,
|
|
hasty (pr1 || pr2) t
|
|
-> False.
|
|
Proof.
|
|
induct 1; auto.
|
|
Qed.
|
|
|
|
Hint Immediate hasty_not_NewChannel hasty_not_BlockChannel hasty_not_Dup hasty_not_Par.
|
|
|
|
Lemma input_typed : forall pr ch A v pr',
|
|
lstep pr (Input {| Channel := ch; TypeOf := A; Value := v |}) pr'
|
|
-> forall t, hasty pr t
|
|
-> exists k, pr = Recv ch k /\ pr' = k v.
|
|
Proof.
|
|
induct 1; simplify; try solve [ exfalso; eauto ].
|
|
induct H; eauto.
|
|
Qed.
|
|
|
|
Lemma output_typed : forall pr ch A v pr',
|
|
lstep pr (Output {| Channel := ch; TypeOf := A; Value := v |}) pr'
|
|
-> forall t, hasty pr t
|
|
-> exists k, pr = Send ch v k /\ pr' = k.
|
|
Proof.
|
|
induct 1; simplify; try solve [ exfalso; eauto ].
|
|
induct H; eauto.
|
|
Qed.
|
|
|
|
Lemma complementarity_rendezvous : forall ch (A : Set) (k1 : A -> _) t,
|
|
hasty (Recv ch k1) t
|
|
-> forall (v : A) k2, hasty (Send ch v k2) (complement t)
|
|
-> exists t', hasty (k1 v) t' /\ hasty k2 (complement t').
|
|
Proof.
|
|
induct 1; invert 1; simplify; eauto.
|
|
Qed.
|
|
|
|
Lemma complement_inverse : forall t,
|
|
t = complement (complement t).
|
|
Proof.
|
|
induct t; simplify; equality.
|
|
Qed.
|
|
|
|
Lemma complementarity_forever : forall pr1 pr2 t,
|
|
hasty pr1 t
|
|
-> hasty pr2 (complement t)
|
|
-> invariantFor (trsys_of (pr1 || pr2))
|
|
(fun pr => exists pr1' pr2' t',
|
|
pr = pr1' || pr2'
|
|
/\ hasty pr1' t'
|
|
/\ hasty pr2' (complement t')).
|
|
Proof.
|
|
simplify.
|
|
apply invariant_induction; simplify.
|
|
|
|
propositional; subst.
|
|
eauto 6.
|
|
|
|
clear pr1 pr2 t H H0.
|
|
first_order; subst.
|
|
invert H2.
|
|
|
|
invert H6; try solve [ exfalso; eauto ].
|
|
|
|
invert H6; try solve [ exfalso; eauto ].
|
|
|
|
eapply input_typed in H4; eauto.
|
|
eapply output_typed in H5; eauto.
|
|
first_order; subst.
|
|
eapply complementarity_rendezvous in H0; eauto.
|
|
first_order.
|
|
|
|
eapply input_typed in H5; eauto.
|
|
eapply output_typed in H4; eauto.
|
|
first_order; subst.
|
|
rewrite complement_inverse in H0.
|
|
eapply complementarity_rendezvous in H1; eauto.
|
|
first_order.
|
|
rewrite complement_inverse in H.
|
|
first_order.
|
|
Qed.
|