mirror of
https://github.com/achlipala/frap.git
synced 2024-11-27 23:06:20 +00:00
Polymorphism template
This commit is contained in:
parent
849b547c2d
commit
1b97418f5e
2 changed files with 420 additions and 0 deletions
419
Polymorphism_template.v
Normal file
419
Polymorphism_template.v
Normal file
|
@ -0,0 +1,419 @@
|
|||
Require Import Frap.
|
||||
|
||||
Set Implicit Arguments.
|
||||
(* This command sets up automatic inference of tedious arguments. *)
|
||||
|
||||
|
||||
(* Our first example: the [option] type family. While Java and friends force
|
||||
* all sorts of different types to include the special value [null], in Coq we
|
||||
* request that option explicitly by wrapping a type in [option]. Specifically,
|
||||
* any value of type [option A], for some type [A], is either [None] (sort of
|
||||
* like [null]) or [Some v] for a [v] of type [A]. *)
|
||||
Inductive option (A : Set) : Set :=
|
||||
| None
|
||||
| Some (v : A).
|
||||
|
||||
Arguments None [A].
|
||||
(* This command asks Coq to *infer* the [A] type for each specific use of
|
||||
* [None]. *)
|
||||
|
||||
(* Here are a few example terms using [option]. *)
|
||||
Example no_number : option nat := None.
|
||||
Example a_number : option nat := Some 42.
|
||||
Example no_number_squared : option (option nat) := None.
|
||||
Example no_number_squared_inside : option (option nat) := Some None.
|
||||
Example a_number_squared : option (option nat) := Some (Some 42).
|
||||
|
||||
(* Pattern matching is the key ingredient for working with inductive definitions
|
||||
* of all sorts. Here are some examples matching on [option]s. *)
|
||||
|
||||
Definition increment_optional (no : option nat) : option nat :=
|
||||
match no with
|
||||
| None => None
|
||||
| Some n => Some (n + 1)
|
||||
end.
|
||||
|
||||
(* Here we use type [A * B] of *pairs*, inhabited by values [(a, b)], with
|
||||
* [a : A] and [b : B]. *)
|
||||
Definition add_optional (po : option (nat * nat)) : option nat :=
|
||||
match po with
|
||||
| None => None
|
||||
| Some (n, m) => Some (n + m)
|
||||
end.
|
||||
|
||||
|
||||
(** * Lists *)
|
||||
|
||||
(* For functional programming (as in Coq), the king of all generic data
|
||||
* structures is the *list*, which you explored a bit in the first problem set.
|
||||
* Let's recap that type definition. *)
|
||||
Inductive list (A : Set) : Set :=
|
||||
| nil
|
||||
| cons (hd : A) (tl : list A).
|
||||
|
||||
Arguments nil [A].
|
||||
|
||||
(* [nil] is the empty list, while [cons], standing for "construct," extends a
|
||||
* list of length [n] into one of length [n+1]. *)
|
||||
|
||||
(* Here are some simple lists. *)
|
||||
|
||||
Example nats0 : list nat := nil.
|
||||
Example nats1 : list nat := cons 1 nil.
|
||||
Example nats2 : list nat := cons 1 (cons 2 nil).
|
||||
|
||||
(* Coq features a wonderful notation system, to help us write more concise and
|
||||
* readable code after introducing new syntactic forms. We will not give a
|
||||
* systematic presentation of the notation system, but we will show many
|
||||
* examples, from which it is possible to infer generality by scientific
|
||||
* induction. And, of course, the interested reader can always check the
|
||||
* notations chapter of the Coq reference manual. *)
|
||||
|
||||
(* First, our examples can get more readable with an infix operator for [cons]. *)
|
||||
|
||||
Infix "::" := cons.
|
||||
|
||||
Example nats1' : list nat := 1 :: nil.
|
||||
Example nats2' : list nat := 1 :: 2 :: nil.
|
||||
|
||||
(* Getting even more fancy, we declare a notation for list literals. *)
|
||||
|
||||
Notation "[ ]" := nil.
|
||||
Notation "[ x1 ; .. ; xN ]" := (cons x1 (.. (cons xN nil) ..)).
|
||||
|
||||
Example nats0'' : list nat := [].
|
||||
Example nats1'' : list nat := [1].
|
||||
Example nats2'' : list nat := [1; 2].
|
||||
Example nats3'' : list nat := [1; 2; 3].
|
||||
|
||||
(* Here are some classic recursive functions that operate over lists.
|
||||
* First, here is how to compute the length of a list. Recall that we put
|
||||
* *implicit* function arguments in curly braces, asking Coq to infer them at
|
||||
* call sites. *)
|
||||
|
||||
Fixpoint length {A} (ls : list A) : nat :=
|
||||
match ls with
|
||||
| nil => 0
|
||||
| _ :: ls' => 1 + length ls'
|
||||
end.
|
||||
|
||||
(* More familiar operations from Pset1 *)
|
||||
|
||||
Fixpoint app {A} (ls1 ls2 : list A) : list A :=
|
||||
match ls1 with
|
||||
| nil => ls2
|
||||
| x :: ls1' => x :: app ls1' ls2
|
||||
end.
|
||||
|
||||
Infix "++" := app.
|
||||
|
||||
Fixpoint rev {A} (ls : list A) : list A :=
|
||||
match ls with
|
||||
| nil => nil
|
||||
| x :: ls' => rev ls' ++ [x]
|
||||
end.
|
||||
|
||||
Theorem length_app : forall A (ls1 ls2 : list A),
|
||||
length (ls1 ++ ls2) = length ls1 + length ls2.
|
||||
Admitted.
|
||||
|
||||
(* One of the classic gotchas in functional-programming class is how slow this
|
||||
* naive [rev] is. Each [app] operation requires linear time, so running
|
||||
* linearly many [app]s brings us to quadratic time for [rev]. Using a helper
|
||||
* function, we can bring [rev] to its optimal linear time. *)
|
||||
|
||||
Fixpoint rev_append {A} (ls acc : list A) : list A :=
|
||||
match ls with
|
||||
| nil => acc
|
||||
| x :: ls' => rev_append ls' (x :: acc)
|
||||
end.
|
||||
|
||||
(* This function [rev_append] takes an extra *accumulator* argument, in which we
|
||||
* gradually build up the original input in reversed order. The base case just
|
||||
* returns the accumulator. Now reversal just needs to do a [rev_append] with
|
||||
* an empty initial accumulator. *)
|
||||
|
||||
Definition rev' {A} (ls : list A) : list A :=
|
||||
rev_append ls [].
|
||||
|
||||
(* A few test cases can help convince us that this seems to work. *)
|
||||
|
||||
Compute rev [1; 2; 3; 4].
|
||||
Compute rev' [1; 2; 3; 4].
|
||||
Compute rev ["hi"; "bye"; "sky"].
|
||||
Compute rev' ["hi"; "bye"; "sky"].
|
||||
|
||||
(* OK, great. Now it seems worth investing in a correctness proof. We'll
|
||||
* discover it interactively in class, but here's a worked-out final
|
||||
* answer, with the several lemmas that we discover are useful. *)
|
||||
|
||||
Theorem rev'_ok : forall A (ls : list A),
|
||||
rev' ls = rev ls.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
(** ** Zipping and unzipping *)
|
||||
|
||||
(* Another classic pair of list operations is zipping and unzipping.
|
||||
* These functions convert between pairs of lists and lists of pairs. *)
|
||||
|
||||
Fixpoint zip {A1 A2} (ls1 : list A1) (ls2 : list A2) : list (A1 * A2) :=
|
||||
match ls1, ls2 with
|
||||
| x1 :: ls1', x2 :: ls2' => (x1, x2) :: zip ls1' ls2'
|
||||
| _, _ => []
|
||||
end.
|
||||
(* Note how, when passed two lengths of different lists, [zip] drops the
|
||||
* mismatched suffix of the longer list. *)
|
||||
|
||||
(* An explicit [Set] annotation is needed here, for obscure type-inference
|
||||
* reasons. *)
|
||||
Fixpoint unzip {A1 A2 : Set} (ls : list (A1 * A2)) : list A1 * list A2 :=
|
||||
match ls with
|
||||
| [] => ([], [])
|
||||
| (x1, x2) :: ls' =>
|
||||
let (ls1, ls2) := unzip ls' in
|
||||
(x1 :: ls1, x2 :: ls2)
|
||||
end.
|
||||
|
||||
(* A few common-sense properties hold of these definitions. *)
|
||||
|
||||
Theorem length_zip : forall A1 A2 (ls1 : list A1) (ls2 : list A2),
|
||||
length (zip ls1 ls2) = 7.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
(* We write [fst] and [snd] for the first and second projection operators on
|
||||
* pairs, respectively. *)
|
||||
|
||||
Theorem length_unzip1 : forall (A1 A2 : Set) (ls : list (A1 * A2)),
|
||||
length (fst (unzip ls)) = length ls.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Theorem length_unzip2 : forall (A1 A2 : Set) (ls : list (A1 * A2)),
|
||||
length (snd (unzip ls)) = length ls.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Theorem zip_unzip : forall (A1 A2 : Set) (ls : list (A1 * A2)),
|
||||
(let (ls1, ls2) := unzip ls in zip ls1 ls2) = ls.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
(* There are also interesting interactions with [app] and [rev]. *)
|
||||
|
||||
Theorem unzip_app : forall (A1 A2 : Set) (x y : list (A1 * A2)),
|
||||
unzip (x ++ y)
|
||||
= (let (x1, x2) := unzip x in
|
||||
let (y1, y2) := unzip y in
|
||||
(x1 ++ y1, x2 ++ y2)).
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Theorem unzip_rev : forall (A1 A2 : Set) (ls : list (A1 * A2)),
|
||||
unzip (rev ls) = (let (ls1, ls2) := unzip ls in
|
||||
(rev ls1, rev ls2)).
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
(** * Binary trees *)
|
||||
|
||||
(* Another classic datatype is binary trees, which we can define like so. *)
|
||||
Inductive tree (A : Set) : Set :=
|
||||
| Leaf
|
||||
| Node (l : tree A) (d : A) (r : tree A).
|
||||
|
||||
Arguments Leaf [A].
|
||||
|
||||
Example tr1 : tree nat := Node (Node Leaf 7 Leaf) 8 (Node Leaf 9 (Node Leaf 10 Leaf)).
|
||||
|
||||
(* There is a natural notion of size of a tree. *)
|
||||
Fixpoint size {A} (t : tree A) : nat :=
|
||||
match t with
|
||||
| Leaf => 0
|
||||
| Node l _ r => 1 + size l + size r
|
||||
end.
|
||||
|
||||
(* There is also a natural sense of reversing a tree, flipping it around its
|
||||
* vertical axis. *)
|
||||
Fixpoint reverse {A} (t : tree A) : tree A :=
|
||||
match t with
|
||||
| Leaf => Leaf
|
||||
| Node l d r => Node (reverse r) d (reverse l)
|
||||
end.
|
||||
|
||||
(* There is a natural relationship between the two. *)
|
||||
Theorem size_reverse : forall A (t : tree A),
|
||||
size (reverse t) = size t.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
(* Another classic tree operation is flattening into lists. *)
|
||||
Fixpoint flatten {A} (t : tree A) : list A :=
|
||||
match t with
|
||||
| Leaf => []
|
||||
| Node l d r => flatten l ++ d :: flatten r
|
||||
end.
|
||||
(* Note here that operators [++] and [::] are right-associative. *)
|
||||
|
||||
Theorem length_flatten : forall A (t : tree A),
|
||||
length (flatten t) = size t.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Theorem rev_flatten : forall A (t : tree A),
|
||||
rev (flatten t) = flatten (reverse t).
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
(** * Syntax trees *)
|
||||
|
||||
(* Trees are particularly important to us in studying program proof, since it is
|
||||
* natural to represent programs as *syntax trees*. Here's a quick example, for
|
||||
* a tiny imperative language. *)
|
||||
|
||||
Inductive expression : Set :=
|
||||
| Const (n : nat)
|
||||
| Var (x : var)
|
||||
| Plus (e1 e2 : expression)
|
||||
| Minus (e1 e2 : expression)
|
||||
| Times (e1 e2 : expression)
|
||||
| GreaterThan (e1 e2 : expression)
|
||||
| Not (e : expression).
|
||||
|
||||
Inductive statement : Set :=
|
||||
| Assign (x : var) (e : expression)
|
||||
| Sequence (s1 s2 : statement)
|
||||
| IfThenElse (e : expression) (s1 s2 : statement)
|
||||
| WhileLoop (e : expression) (s : statement).
|
||||
|
||||
(* First, here's a quick sample of nifty notations to write
|
||||
* almost-natural-looking embedded programs in Coq. *)
|
||||
Coercion Const : nat >-> expression.
|
||||
Coercion Var : string >-> expression.
|
||||
Infix "+" := Plus : embedded_scope.
|
||||
Infix "-" := Minus : embedded_scope.
|
||||
Infix "*" := Times : embedded_scope.
|
||||
Infix ">" := GreaterThan : embedded_scope.
|
||||
Infix "<-" := Assign (at level 75) : embedded_scope.
|
||||
Infix ";" := Sequence (at level 76) : embedded_scope.
|
||||
Notation "'If' e {{ s1 }} 'else' {{ s2 }}" := (IfThenElse e s1 s2) (at level 75) : embedded_scope.
|
||||
Notation "'While' e {{ s }}" := (WhileLoop e s) (at level 75) : embedded_scope.
|
||||
Delimit Scope embedded_scope with embedded.
|
||||
|
||||
Example factorial :=
|
||||
("answer" <- 1;
|
||||
While ("input" > 0) {{
|
||||
"answer" <- "answer" * "input";
|
||||
"input" <- "input" - 1
|
||||
}})%embedded.
|
||||
|
||||
(* A variety of compiler-style operations can be coded on top of this type.
|
||||
* Here's one to count total variable occurrences. *)
|
||||
|
||||
Fixpoint varsInExpression (e : expression) : nat :=
|
||||
match e with
|
||||
| Const _ => 0
|
||||
| Var _ => 1
|
||||
| Plus e1 e2
|
||||
| Minus e1 e2
|
||||
| Times e1 e2
|
||||
| GreaterThan e1 e2 => varsInExpression e1 + varsInExpression e2
|
||||
| Not e1 => varsInExpression e1
|
||||
end.
|
||||
|
||||
Fixpoint varsInStatement (s : statement) : nat :=
|
||||
match s with
|
||||
| Assign _ e => 1 + varsInExpression e
|
||||
| Sequence s1 s2 => varsInStatement s1 + varsInStatement s2
|
||||
| IfThenElse e s1 s2 => varsInExpression e + varsInStatement s1 + varsInStatement s2
|
||||
| WhileLoop e s1 => varsInExpression e + varsInStatement s1
|
||||
end.
|
||||
|
||||
(* We will need to wait for a few more lectures' worth of conceptual progress
|
||||
* before we can prove that transformations on programs preserve meaning, but we
|
||||
* do already have enough tools that prove that transformations preserve more
|
||||
* basic properties, like number of variables. Here's one such transformation,
|
||||
* which flips "then" and "else" cases while also negating "if" conditions. *)
|
||||
Fixpoint flipper (s : statement) : statement :=
|
||||
match s with
|
||||
| Assign _ _ => s
|
||||
| Sequence s1 s2 => Sequence (flipper s1) (flipper s2)
|
||||
| IfThenElse e s1 s2 => IfThenElse (Not e) (flipper s2) (flipper s1)
|
||||
| WhileLoop e s1 => WhileLoop e (flipper s1)
|
||||
end.
|
||||
|
||||
Theorem varsIn_flipper : forall s,
|
||||
varsInStatement (flipper s) = varsInStatement s.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
(* Just for the sheer madcap fun of it, let's write some translations of
|
||||
* programs into our lists from before, with variables as data values. *)
|
||||
|
||||
Fixpoint listifyExpression (e : expression) : list var :=
|
||||
match e with
|
||||
| Const _ => []
|
||||
| Var x => [x]
|
||||
| Plus e1 e2
|
||||
| Minus e1 e2
|
||||
| Times e1 e2
|
||||
| GreaterThan e1 e2 => listifyExpression e1 ++ listifyExpression e2
|
||||
| Not e1 => listifyExpression e1
|
||||
end.
|
||||
|
||||
Fixpoint listifyStatement (s : statement) : list var :=
|
||||
match s with
|
||||
| Assign x e => x :: listifyExpression e
|
||||
| Sequence s1 s2 => listifyStatement s1 ++ listifyStatement s2
|
||||
| IfThenElse e s1 s2 => listifyExpression e ++ listifyStatement s1 ++ listifyStatement s2
|
||||
| WhileLoop e s1 => listifyExpression e ++ listifyStatement s1
|
||||
end.
|
||||
|
||||
Compute listifyStatement factorial.
|
||||
|
||||
(* At this point, I can't resist switching to a more automated proof style,
|
||||
* though still a pretty tame one. *)
|
||||
|
||||
Theorem length_listifyStatement : forall s,
|
||||
length (listifyStatement s) = varsInStatement s.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
(* Other transformations are also possible, like the Swedish-Chef optimization,
|
||||
* that turns every variable into "bork". It saves many bits when most variable
|
||||
* names are longer than 4 characters. *)
|
||||
|
||||
Fixpoint swedishExpression (e : expression) : expression :=
|
||||
match e with
|
||||
| Const _ => e
|
||||
| Var _ => Var "bork"
|
||||
| Plus e1 e2 => Plus (swedishExpression e1) (swedishExpression e2)
|
||||
| Minus e1 e2 => Minus (swedishExpression e1) (swedishExpression e2)
|
||||
| Times e1 e2 => Times (swedishExpression e1) (swedishExpression e2)
|
||||
| GreaterThan e1 e2 => GreaterThan (swedishExpression e1) (swedishExpression e2)
|
||||
| Not e1 => Not (swedishExpression e1)
|
||||
end.
|
||||
|
||||
Fixpoint swedishStatement (s : statement) : statement :=
|
||||
match s with
|
||||
| Assign _ e => Assign "bork" (swedishExpression e)
|
||||
| Sequence s1 s2 => Sequence (swedishStatement s1) (swedishStatement s2)
|
||||
| IfThenElse e s1 s2 => IfThenElse (swedishExpression e) (swedishStatement s1) (swedishStatement s2)
|
||||
| WhileLoop e s1 => WhileLoop (swedishExpression e) (swedishStatement s1)
|
||||
end.
|
||||
|
||||
Compute swedishStatement factorial.
|
||||
|
||||
Fixpoint swedishList (ls : list var) : list var :=
|
||||
match ls with
|
||||
| [] => []
|
||||
| _ :: ls => "bork" :: swedishList ls
|
||||
end.
|
||||
|
||||
Lemma listifyStatement_swedishStatement : forall s,
|
||||
listifyStatement (swedishStatement s) = swedishList (listifyStatement s).
|
||||
Proof.
|
||||
Admitted.
|
|
@ -11,6 +11,7 @@ Frap.v
|
|||
BasicSyntax_template.v
|
||||
BasicSyntax.v
|
||||
Polymorphism.v
|
||||
Polymorphism_template.v
|
||||
Interpreters_template.v
|
||||
Interpreters.v
|
||||
TransitionSystems_template.v
|
||||
|
|
Loading…
Reference in a new issue