mirror of
https://github.com/achlipala/frap.git
synced 2025-01-22 06:16:12 +00:00
Polymorphism: syntax trees
This commit is contained in:
parent
0e32a409d7
commit
849b547c2d
2 changed files with 189 additions and 0 deletions
188
Polymorphism.v
188
Polymorphism.v
|
@ -414,3 +414,191 @@ Proof.
|
|||
simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Syntax trees *)
|
||||
|
||||
(* Trees are particularly important to us in studying program proof, since it is
|
||||
* natural to represent programs as *syntax trees*. Here's a quick example, for
|
||||
* a tiny imperative language. *)
|
||||
|
||||
Inductive expression : Set :=
|
||||
| Const (n : nat)
|
||||
| Var (x : var)
|
||||
| Plus (e1 e2 : expression)
|
||||
| Minus (e1 e2 : expression)
|
||||
| Times (e1 e2 : expression)
|
||||
| GreaterThan (e1 e2 : expression)
|
||||
| Not (e : expression).
|
||||
|
||||
Inductive statement : Set :=
|
||||
| Assign (x : var) (e : expression)
|
||||
| Sequence (s1 s2 : statement)
|
||||
| IfThenElse (e : expression) (s1 s2 : statement)
|
||||
| WhileLoop (e : expression) (s : statement).
|
||||
|
||||
(* First, here's a quick sample of nifty notations to write
|
||||
* almost-natural-looking embedded programs in Coq. *)
|
||||
Coercion Const : nat >-> expression.
|
||||
Coercion Var : string >-> expression.
|
||||
Infix "+" := Plus : embedded_scope.
|
||||
Infix "-" := Minus : embedded_scope.
|
||||
Infix "*" := Times : embedded_scope.
|
||||
Infix ">" := GreaterThan : embedded_scope.
|
||||
Infix "<-" := Assign (at level 75) : embedded_scope.
|
||||
Infix ";" := Sequence (at level 76) : embedded_scope.
|
||||
Notation "'If' e {{ s1 }} 'else' {{ s2 }}" := (IfThenElse e s1 s2) (at level 75) : embedded_scope.
|
||||
Notation "'While' e {{ s }}" := (WhileLoop e s) (at level 75) : embedded_scope.
|
||||
Delimit Scope embedded_scope with embedded.
|
||||
|
||||
Example factorial :=
|
||||
("answer" <- 1;
|
||||
While ("input" > 0) {{
|
||||
"answer" <- "answer" * "input";
|
||||
"input" <- "input" - 1
|
||||
}})%embedded.
|
||||
|
||||
(* A variety of compiler-style operations can be coded on top of this type.
|
||||
* Here's one to count total variable occurrences. *)
|
||||
|
||||
Fixpoint varsInExpression (e : expression) : nat :=
|
||||
match e with
|
||||
| Const _ => 0
|
||||
| Var _ => 1
|
||||
| Plus e1 e2
|
||||
| Minus e1 e2
|
||||
| Times e1 e2
|
||||
| GreaterThan e1 e2 => varsInExpression e1 + varsInExpression e2
|
||||
| Not e1 => varsInExpression e1
|
||||
end.
|
||||
|
||||
Fixpoint varsInStatement (s : statement) : nat :=
|
||||
match s with
|
||||
| Assign _ e => 1 + varsInExpression e
|
||||
| Sequence s1 s2 => varsInStatement s1 + varsInStatement s2
|
||||
| IfThenElse e s1 s2 => varsInExpression e + varsInStatement s1 + varsInStatement s2
|
||||
| WhileLoop e s1 => varsInExpression e + varsInStatement s1
|
||||
end.
|
||||
|
||||
(* We will need to wait for a few more lectures' worth of conceptual progress
|
||||
* before we can prove that transformations on programs preserve meaning, but we
|
||||
* do already have enough tools that prove that transformations preserve more
|
||||
* basic properties, like number of variables. Here's one such transformation,
|
||||
* which flips "then" and "else" cases while also negating "if" conditions. *)
|
||||
Fixpoint flipper (s : statement) : statement :=
|
||||
match s with
|
||||
| Assign _ _ => s
|
||||
| Sequence s1 s2 => Sequence (flipper s1) (flipper s2)
|
||||
| IfThenElse e s1 s2 => IfThenElse (Not e) (flipper s2) (flipper s1)
|
||||
| WhileLoop e s1 => WhileLoop e (flipper s1)
|
||||
end.
|
||||
|
||||
Theorem varsIn_flipper : forall s,
|
||||
varsInStatement (flipper s) = varsInStatement s.
|
||||
Proof.
|
||||
induct s; simplify.
|
||||
|
||||
equality.
|
||||
|
||||
equality.
|
||||
|
||||
linear_arithmetic.
|
||||
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
(* Just for the sheer madcap fun of it, let's write some translations of
|
||||
* programs into our lists from before, with variables as data values. *)
|
||||
|
||||
Fixpoint listifyExpression (e : expression) : list var :=
|
||||
match e with
|
||||
| Const _ => []
|
||||
| Var x => [x]
|
||||
| Plus e1 e2
|
||||
| Minus e1 e2
|
||||
| Times e1 e2
|
||||
| GreaterThan e1 e2 => listifyExpression e1 ++ listifyExpression e2
|
||||
| Not e1 => listifyExpression e1
|
||||
end.
|
||||
|
||||
Fixpoint listifyStatement (s : statement) : list var :=
|
||||
match s with
|
||||
| Assign x e => x :: listifyExpression e
|
||||
| Sequence s1 s2 => listifyStatement s1 ++ listifyStatement s2
|
||||
| IfThenElse e s1 s2 => listifyExpression e ++ listifyStatement s1 ++ listifyStatement s2
|
||||
| WhileLoop e s1 => listifyExpression e ++ listifyStatement s1
|
||||
end.
|
||||
|
||||
Compute listifyStatement factorial.
|
||||
|
||||
(* At this point, I can't resist switching to a more automated proof style,
|
||||
* though still a pretty tame one. *)
|
||||
|
||||
Hint Rewrite length_app.
|
||||
|
||||
Lemma length_listifyExpression : forall e,
|
||||
length (listifyExpression e) = varsInExpression e.
|
||||
Proof.
|
||||
induct e; simplify; linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite length_listifyExpression.
|
||||
|
||||
Theorem length_listifyStatement : forall s,
|
||||
length (listifyStatement s) = varsInStatement s.
|
||||
Proof.
|
||||
induct s; simplify; linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
(* Other transformations are also possible, like the Swedish-Chef optimization,
|
||||
* that turns every variable into "bork". It saves many bits when most variable
|
||||
* names are longer than 4 characters. *)
|
||||
|
||||
Fixpoint swedishExpression (e : expression) : expression :=
|
||||
match e with
|
||||
| Const _ => e
|
||||
| Var _ => Var "bork"
|
||||
| Plus e1 e2 => Plus (swedishExpression e1) (swedishExpression e2)
|
||||
| Minus e1 e2 => Minus (swedishExpression e1) (swedishExpression e2)
|
||||
| Times e1 e2 => Times (swedishExpression e1) (swedishExpression e2)
|
||||
| GreaterThan e1 e2 => GreaterThan (swedishExpression e1) (swedishExpression e2)
|
||||
| Not e1 => Not (swedishExpression e1)
|
||||
end.
|
||||
|
||||
Fixpoint swedishStatement (s : statement) : statement :=
|
||||
match s with
|
||||
| Assign _ e => Assign "bork" (swedishExpression e)
|
||||
| Sequence s1 s2 => Sequence (swedishStatement s1) (swedishStatement s2)
|
||||
| IfThenElse e s1 s2 => IfThenElse (swedishExpression e) (swedishStatement s1) (swedishStatement s2)
|
||||
| WhileLoop e s1 => WhileLoop (swedishExpression e) (swedishStatement s1)
|
||||
end.
|
||||
|
||||
Compute swedishStatement factorial.
|
||||
|
||||
Fixpoint swedishList (ls : list var) : list var :=
|
||||
match ls with
|
||||
| [] => []
|
||||
| _ :: ls => "bork" :: swedishList ls
|
||||
end.
|
||||
|
||||
Lemma swedishList_app : forall ls1 ls2,
|
||||
swedishList (ls1 ++ ls2) = swedishList ls1 ++ swedishList ls2.
|
||||
Proof.
|
||||
induct ls1; simplify; equality.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite swedishList_app.
|
||||
|
||||
Lemma listifyExpression_swedishExpression : forall e,
|
||||
listifyExpression (swedishExpression e) = swedishList (listifyExpression e).
|
||||
Proof.
|
||||
induct e; simplify; equality.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite listifyExpression_swedishExpression.
|
||||
|
||||
Lemma listifyStatement_swedishStatement : forall s,
|
||||
listifyStatement (swedishStatement s) = swedishList (listifyStatement s).
|
||||
Proof.
|
||||
induct s; simplify; equality.
|
||||
Qed.
|
||||
|
|
|
@ -10,6 +10,7 @@ AbstractInterpret.v
|
|||
Frap.v
|
||||
BasicSyntax_template.v
|
||||
BasicSyntax.v
|
||||
Polymorphism.v
|
||||
Interpreters_template.v
|
||||
Interpreters.v
|
||||
TransitionSystems_template.v
|
||||
|
|
Loading…
Reference in a new issue