Set simplification for ModelChecking

This commit is contained in:
Adam Chlipala 2016-02-14 17:33:46 -05:00
parent c88ae6d484
commit 4371d08696
3 changed files with 97 additions and 6 deletions

2
Frap.v
View file

@ -43,7 +43,7 @@ Ltac invert0 e := invert e; fail.
Ltac invert1 e := invert0 e || (invert e; []).
Ltac invert2 e := invert1 e || (invert e; [|]).
Ltac simplify := repeat progress (simpl in *; intros; try autorewrite with core in *).
Ltac simplify := repeat progress (simpl in *; intros; try autorewrite with core in *); repeat removeDups.
Ltac propositional := intuition idtac.
Ltac linear_arithmetic := intros;

View file

@ -190,9 +190,6 @@ Proof.
apply oneStepClosure_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_split; simplify.
invert H; simplify.
apply singleton_in.
apply oneStepClosure_empty.
simplify.
@ -202,10 +199,55 @@ Proof.
propositional; invert H0; try equality.
invert H; equality.
invert H1; equality.
invert H; equality.
invert H; try equality.
simplify.
propositional; subst; simplify; propositional.
(* ^-- *)
Qed.
Hint Rewrite fact_init_is.
Ltac model_check_done :=
apply MscDone; apply prove_oneStepClosure; simplify; propositional; subst;
repeat match goal with
| [ H : _ |- _ ] => invert H
end; simplify; equality.
Ltac model_check_step :=
eapply MscStep; [
repeat ((apply oneStepClosure_empty; simplify)
|| (apply oneStepClosure_split; [ simplify;
repeat match goal with
| [ H : _ |- _ ] => invert H
end; apply singleton_in | ]))
| simplify ].
Ltac model_check_steps1 := model_check_done || model_check_step.
Ltac model_check_steps := repeat model_check_steps1.
Ltac model_check_finish := simplify; propositional; subst; simplify; equality.
Ltac model_check_find_invariant :=
simplify; eapply invariantFor_weaken; [
apply multiStepClosure_ok; simplify; model_check_steps
| ].
Ltac model_check := model_check_find_invariant; model_check_finish.
Theorem factorial_ok_2_snazzy :
invariantFor (factorial_sys 2) (fact_correct 2).
Proof.
model_check.
Qed.
Theorem factorial_ok_3 :
invariantFor (factorial_sys 3) (fact_correct 3).
Proof.
model_check.
Qed.
Theorem factorial_ok_4 :
invariantFor (factorial_sys 4) (fact_correct 4).
Proof.
model_check.
Qed.

49
Sets.v
View file

@ -126,3 +126,52 @@ End properties.
Hint Resolve subseteq_refl subseteq_In.
Hint Rewrite union_constant.
(** * Removing duplicates from constant sets *)
Inductive removeDups A : list A -> list A -> Prop :=
| RdNil : removeDups nil nil
| RdNew : forall x ls ls',
~List.In x ls
-> removeDups ls ls'
-> removeDups (x :: ls) (x :: ls')
| RdDup : forall x ls ls',
List.In x ls
-> removeDups ls ls'
-> removeDups (x :: ls) ls'.
Theorem removeDups_fwd : forall A x (ls ls' : list A),
removeDups ls ls'
-> List.In x ls
-> List.In x ls'.
Proof.
induction 1; simpl; intuition.
subst; eauto.
Qed.
Theorem removeDups_bwd : forall A x (ls ls' : list A),
removeDups ls ls'
-> List.In x ls'
-> List.In x ls.
Proof.
induction 1; simpl; intuition.
Qed.
Theorem removeDups_ok : forall A (ls ls' : list A),
removeDups ls ls'
-> constant ls = constant ls'.
Proof.
intros.
apply sets_equal.
unfold constant; intuition eauto using removeDups_fwd, removeDups_bwd.
Qed.
Ltac removeDups :=
match goal with
| [ |- context[constant ?ls] ] =>
erewrite (@removeDups_ok _ ls)
by repeat (apply RdNil
|| (apply RdNew; [ simpl; intuition congruence | ])
|| (apply RdDup; [ simpl; intuition congruence | ]))
end.