mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
Add Interpreters_template
This commit is contained in:
parent
583446eaf3
commit
5299d4ebf3
2 changed files with 341 additions and 0 deletions
340
Interpreters_template.v
Normal file
340
Interpreters_template.v
Normal file
|
@ -0,0 +1,340 @@
|
|||
Require Import Frap.
|
||||
|
||||
|
||||
(* We begin with a return to our arithmetic language from the last chapter,
|
||||
* adding subtraction*, which will come in handy later.
|
||||
* *: good pun, right? *)
|
||||
Inductive arith : Set :=
|
||||
| Const (n : nat)
|
||||
| Var (x : var)
|
||||
| Plus (e1 e2 : arith)
|
||||
| Minus (e1 e2 : arith)
|
||||
| Times (e1 e2 : arith).
|
||||
|
||||
Example ex1 := Const 42.
|
||||
Example ex2 := Plus (Var "y") (Times (Var "x") (Const 3)).
|
||||
|
||||
Definition valuation := map var nat.
|
||||
(* A valuation is a finite map from [var] to [nat]. *)
|
||||
|
||||
(* The interpreter is a fairly innocuous-looking recursive function. *)
|
||||
Fixpoint interp (e : arith) (v : valuation) : nat :=
|
||||
match e with
|
||||
| Const n => n
|
||||
| Var x =>
|
||||
(* Note use of infix operator to look up a key in a finite map. *)
|
||||
match v $? x with
|
||||
| None => 0 (* goofy default value! *)
|
||||
| Some n => n
|
||||
end
|
||||
| Plus e1 e2 => interp e1 v + interp e2 v
|
||||
| Minus e1 e2 => interp e1 v - interp e2 v
|
||||
(* For anyone who's wondering: this [-] sticks at 0,
|
||||
* if we would otherwise underflow. *)
|
||||
| Times e1 e2 => interp e1 v * interp e2 v
|
||||
end.
|
||||
|
||||
(* Here's an example valuation, using an infix operator for map extension. *)
|
||||
Definition valuation0 : valuation :=
|
||||
$0 $+ ("x", 17) $+ ("y", 3).
|
||||
|
||||
Theorem interp_ex1 : interp ex1 valuation0 = 42.
|
||||
Proof.
|
||||
simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem interp_ex2 : interp ex2 valuation0 = 54.
|
||||
Proof.
|
||||
unfold valuation0.
|
||||
simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
(* Here's the silly transformation we defined last time. *)
|
||||
Fixpoint commuter (e : arith) : arith :=
|
||||
match e with
|
||||
| Const _ => e
|
||||
| Var _ => e
|
||||
| Plus e1 e2 => Plus (commuter e2) (commuter e1)
|
||||
| Minus e1 e2 => Minus (commuter e1) (commuter e2)
|
||||
(* ^-- NB: didn't change the operand order here! *)
|
||||
| Times e1 e2 => Times (commuter e2) (commuter e1)
|
||||
end.
|
||||
|
||||
(* Instead of proving various odds-and-ends properties about it,
|
||||
* let's show what we *really* care about: it preserves the
|
||||
* *meanings* of expressions! *)
|
||||
Theorem commuter_ok : forall v e, interp (commuter e) v = interp e v.
|
||||
Proof.
|
||||
admit.
|
||||
Qed.
|
||||
|
||||
(* Let's also revisit substitution. *)
|
||||
Fixpoint substitute (inThis : arith) (replaceThis : var) (withThis : arith) : arith :=
|
||||
match inThis with
|
||||
| Const _ => inThis
|
||||
| Var x => if x ==v replaceThis then withThis else inThis
|
||||
| Plus e1 e2 => Plus (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis)
|
||||
| Minus e1 e2 => Minus (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis)
|
||||
| Times e1 e2 => Times (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis)
|
||||
end.
|
||||
|
||||
(* How should we state a correctness property for [substitute]?
|
||||
Theorem substitute_ok : forall v replaceThis withThis inThis,
|
||||
...
|
||||
Proof.
|
||||
|
||||
Qed.*)
|
||||
|
||||
(* Let's also defined a pared-down version of the expression-simplificaton
|
||||
* functions from last chapter. *)
|
||||
Fixpoint doSomeArithmetic (e : arith) : arith :=
|
||||
match e with
|
||||
| Const _ => e
|
||||
| Var _ => e
|
||||
| Plus (Const n1) (Const n2) => Const (n1 + n2)
|
||||
| Plus e1 e2 => Plus (doSomeArithmetic e1) (doSomeArithmetic e2)
|
||||
| Minus e1 e2 => Minus (doSomeArithmetic e1) (doSomeArithmetic e2)
|
||||
| Times (Const n1) (Const n2) => Const (n1 * n2)
|
||||
| Times e1 e2 => Times (doSomeArithmetic e1) (doSomeArithmetic e2)
|
||||
end.
|
||||
|
||||
Theorem doSomeArithmetic_ok : forall e v, interp (doSomeArithmetic e) v = interp e v.
|
||||
Proof.
|
||||
admit.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
(* Of course, we're going to get bored if we confine ourselves to arithmetic
|
||||
* expressions for the rest of our journey. Let's get a bit fancier and define
|
||||
* a *stack machine*, related to postfix calculators that some of you may have
|
||||
* experienced. *)
|
||||
Inductive instruction :=
|
||||
| PushConst (n : nat)
|
||||
| PushVar (x : var)
|
||||
| Add
|
||||
| Subtract
|
||||
| Multiply.
|
||||
|
||||
(* What does it all mean? An interpreter tells us unambiguously! *)
|
||||
Definition run1 (i : instruction) (v : valuation) (stack : list nat) : list nat :=
|
||||
match i with
|
||||
| PushConst n => n :: stack
|
||||
| PushVar x => (match v $? x with
|
||||
| None => 0
|
||||
| Some n => n
|
||||
end) :: stack
|
||||
| Add =>
|
||||
match stack with
|
||||
| arg2 :: arg1 :: stack' => arg1 + arg2 :: stack'
|
||||
| _ => stack (* arbitrary behavior in erroneous case (stack underflow) *)
|
||||
end
|
||||
| Subtract =>
|
||||
match stack with
|
||||
| arg2 :: arg1 :: stack' => arg1 - arg2 :: stack'
|
||||
| _ => stack (* arbitrary behavior in erroneous case *)
|
||||
end
|
||||
| Multiply =>
|
||||
match stack with
|
||||
| arg2 :: arg1 :: stack' => arg1 * arg2 :: stack'
|
||||
| _ => stack (* arbitrary behavior in erroneous case *)
|
||||
end
|
||||
end.
|
||||
|
||||
(* That function explained how to run one instruction.
|
||||
* Here's how to run several of them. *)
|
||||
Fixpoint run (is : list instruction) (v : valuation) (stack : list nat) : list nat :=
|
||||
match is with
|
||||
| nil => stack
|
||||
| i :: is' => run is' v (run1 i v stack)
|
||||
end.
|
||||
|
||||
(* Instead of writing fiddly stack programs ourselves, let's *compile*
|
||||
* arithmetic expressions into equivalent stack programs. *)
|
||||
Fixpoint compile (e : arith) : list instruction :=
|
||||
match e with
|
||||
| Const n => PushConst n :: nil
|
||||
| Var x => PushVar x :: nil
|
||||
| Plus e1 e2 => compile e1 ++ compile e2 ++ Add :: nil
|
||||
| Minus e1 e2 => compile e1 ++ compile e2 ++ Subtract :: nil
|
||||
| Times e1 e2 => compile e1 ++ compile e2 ++ Multiply :: nil
|
||||
end.
|
||||
|
||||
Theorem compile_ok : forall e v, run (compile e) v nil = interp e v :: nil.
|
||||
Proof.
|
||||
admit.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
(* Let's get a bit fancier, moving toward the level of general-purpose
|
||||
* imperative languages. Here's a language of commands, building on the
|
||||
* language of expressions we have defined. *)
|
||||
Inductive cmd :=
|
||||
| Skip
|
||||
| Assign (x : var) (e : arith)
|
||||
| Sequence (c1 c2 : cmd)
|
||||
| Repeat (e : arith) (body : cmd).
|
||||
|
||||
Fixpoint selfCompose {A} (f : A -> A) (n : nat) : A -> A :=
|
||||
match n with
|
||||
| O => fun x => x
|
||||
| S n' => fun x => selfCompose f n' (f x)
|
||||
end.
|
||||
|
||||
Fixpoint exec (c : cmd) (v : valuation) : valuation :=
|
||||
match c with
|
||||
| Skip => v
|
||||
| Assign x e => v $+ (x, interp e v)
|
||||
| Sequence c1 c2 => exec c2 (exec c1 v)
|
||||
| Repeat e body => selfCompose (exec body) (interp e v) v
|
||||
end.
|
||||
|
||||
(* Let's define some programs and prove that they operate in certain ways. *)
|
||||
|
||||
Example factorial_ugly :=
|
||||
Sequence
|
||||
(Assign "output" (Const 1))
|
||||
(Repeat (Var "input")
|
||||
(Sequence
|
||||
(Assign "output" (Times (Var "output") (Var "input")))
|
||||
(Assign "input" (Minus (Var "input") (Const 1))))).
|
||||
|
||||
(* Ouch; that code is hard to read. Let's introduce some notations to make the
|
||||
* concrete syntax more palatable. We won't explain the general mechanisms on
|
||||
* display here, but see the Coq manual for details, or try to reverse-engineer
|
||||
* them from our examples. *)
|
||||
Coercion Const : nat >-> arith.
|
||||
Coercion Var : var >-> arith.
|
||||
Infix "+" := Plus : arith_scope.
|
||||
Infix "-" := Minus : arith_scope.
|
||||
Infix "*" := Times : arith_scope.
|
||||
Delimit Scope arith_scope with arith.
|
||||
Notation "x <- e" := (Assign x e%arith) (at level 75).
|
||||
Infix ";" := Sequence (at level 76).
|
||||
Notation "'repeat' e 'doing' body 'done'" := (Repeat e%arith body) (at level 75).
|
||||
|
||||
(* OK, let's try that program again. *)
|
||||
Example factorial :=
|
||||
"output" <- 1;
|
||||
repeat "input" doing
|
||||
"output" <- "output" * "input";
|
||||
"input" <- "input" - 1
|
||||
done.
|
||||
|
||||
(* Now we prove that it really computes factorial.
|
||||
* First, a reference implementation as a functional program. *)
|
||||
Fixpoint fact (n : nat) : nat :=
|
||||
match n with
|
||||
| O => 1
|
||||
| S n' => n * fact n'
|
||||
end.
|
||||
|
||||
Theorem factorial_ok : forall v input,
|
||||
v $? "input" = Some input
|
||||
-> exec factorial v $? "output" = Some (fact input).
|
||||
Proof.
|
||||
admit.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
(* One last example: let's try to do loop unrolling, for constant iteration
|
||||
* counts. That is, we can duplicate the loop body instead of using an explicit
|
||||
* loop. *)
|
||||
|
||||
Fixpoint seqself (c : cmd) (n : nat) : cmd :=
|
||||
match n with
|
||||
| O => Skip
|
||||
| S n' => Sequence c (seqself c n')
|
||||
end.
|
||||
|
||||
Fixpoint unroll (c : cmd) : cmd :=
|
||||
match c with
|
||||
| Skip => c
|
||||
| Assign _ _ => c
|
||||
| Sequence c1 c2 => Sequence (unroll c1) (unroll c2)
|
||||
| Repeat (Const n) c1 => seqself (unroll c1) n
|
||||
(* ^-- the crucial case! *)
|
||||
| Repeat e c1 => Repeat e (unroll c1)
|
||||
end.
|
||||
|
||||
(* This obvious-sounding fact will come in handy: self-composition gives the
|
||||
* same result, when passed two functions that map equal inputs to equal
|
||||
* outputs. *)
|
||||
Lemma selfCompose_extensional : forall {A} (f g : A -> A) n x,
|
||||
(forall y, f y = g y)
|
||||
-> selfCompose f n x = selfCompose g n x.
|
||||
Proof.
|
||||
induct n; simplify; try equality.
|
||||
|
||||
rewrite H.
|
||||
apply IHn.
|
||||
trivial.
|
||||
Qed.
|
||||
|
||||
Theorem unroll_ok : forall c v, exec (unroll c) v = exec c v.
|
||||
Proof.
|
||||
admit.
|
||||
Qed.
|
|
@ -7,4 +7,5 @@ Invariant.v
|
|||
Frap.v
|
||||
BasicSyntax_template.v
|
||||
BasicSyntax.v
|
||||
Interpreters_template.v
|
||||
Interpreters.v
|
||||
|
|
Loading…
Reference in a new issue