LambdaCalculusAndTypeSoundness: untyped lambda calculus semantics, two ways

This commit is contained in:
Adam Chlipala 2016-03-13 13:47:25 -04:00
parent 9ce653261c
commit 55257f669d

View file

@ -5,6 +5,213 @@
Require Import Frap.
Module Ulc.
Inductive exp : Set :=
| Var : var -> exp
| Abs : var -> exp -> exp
| App : exp -> exp -> exp.
Fixpoint subst (rep : exp) (x : string) (e : exp) : exp :=
match e with
| Var y => if string_dec y x then rep else Var y
| Abs y e1 => Abs y (if string_dec y x then e1 else subst rep x e1)
| App e1 e2 => App (subst rep x e1) (subst rep x e2)
end.
(** * Big-step semantics *)
(** This is the most straightforward way to give semantics to lambda terms:
* We evaluate any closed term into a value (that is, an [Abs]). *)
Inductive eval : exp -> exp -> Prop :=
| BigAbs : forall x e,
eval (Abs x e) (Abs x e)
| BigApp : forall e1 x e1' e2 v2 v,
eval e1 (Abs x e1')
-> eval e2 v2
-> eval (subst v2 x e1') v
-> eval (App e1 e2) v.
(** Note that we omit a [Var] case, since variable terms can't be *closed*. *)
(** Which terms are values, that is, final results of execution? *)
Inductive value : exp -> Prop :=
| Value : forall x e, value (Abs x e).
(** We're cheating a bit here, *assuming* that the term is also closed. *)
Hint Constructors eval value.
(** Actually, let's prove that [eval] only produces values. *)
Theorem eval_value : forall e v,
eval e v
-> value v.
Proof.
induct 1; eauto.
Qed.
(** * Small-step semantics with evaluation contexts *)
Inductive context : Set :=
| Hole : context
| App1 : context -> exp -> context
| App2 : exp -> context -> context.
Inductive plug : context -> exp -> exp -> Prop :=
| PlugHole : forall e,
plug Hole e e
| PlugApp1 : forall c e1 e2 e,
plug c e1 e
-> plug (App1 c e2) e1 (App e e2)
| PlugApp2 : forall c e1 e2 e,
value e1
-> plug c e2 e
-> plug (App2 e1 c) e2 (App e1 e).
(* Subtle point: the [value] hypothesis right above enforces a well-formedness
* condition on contexts that may actually be plugged. We don't allow
* skipping over a lefthand subterm of an application when that term has
* evaluation work left to do. This condition is the essence of
* *call-by-value* instead of other evaluation strategies. Details are
* largely beyond our scope here. *)
Inductive step : exp -> exp -> Prop :=
| ContextBeta : forall c x e v e1 e2,
value v
-> plug c (App (Abs x e) v) e1
-> plug c (subst v x e) e2
-> step e1 e2.
Hint Constructors plug step.
(** We can move directly to establishing inclusion from basic small steps to contextual small steps. *)
Theorem value_eval : forall v,
value v
-> eval v v.
Proof.
invert 1; eauto.
Qed.
Hint Resolve value_eval.
Lemma step_eval'' : forall v c x e e1 e2 v0,
value v
-> plug c (App (Abs x e) v) e1
-> plug c (subst v x e) e2
-> eval e2 v0
-> eval e1 v0.
Proof.
induct c; invert 2; invert 1; simplify; eauto.
invert H0; eauto.
invert H0; eauto.
Qed.
Hint Resolve step_eval''.
Lemma step_eval' : forall e1 e2,
step e1 e2
-> forall v, eval e2 v
-> eval e1 v.
Proof.
invert 1; simplify; eauto.
Qed.
Hint Resolve step_eval'.
Theorem step_eval : forall e v,
step^* e v
-> value v
-> eval e v.
Proof.
induct 1; eauto.
Qed.
Lemma plug_functional : forall C e e1,
plug C e e1
-> forall e2, plug C e e2
-> e1 = e2.
Proof.
induct 1; invert 1; simplify; try f_equal; eauto.
Qed.
Lemma plug_mirror : forall C e e', plug C e e'
-> forall e1, exists e1', plug C e1 e1'.
Proof.
induct 1; simplify; eauto.
specialize (IHplug e0); first_order; eauto.
specialize (IHplug e0); first_order; eauto.
Qed.
Fixpoint compose (C1 C2 : context) : context :=
match C2 with
| Hole => C1
| App1 C2' e => App1 (compose C1 C2') e
| App2 v C2' => App2 v (compose C1 C2')
end.
Lemma compose_ok : forall C1 C2 e1 e2 e3,
plug C1 e1 e2
-> plug C2 e2 e3
-> plug (compose C1 C2) e1 e3.
Proof.
induct 2; simplify; eauto.
Qed.
Hint Resolve compose_ok.
Lemma step_plug : forall e1 e2,
step e1 e2
-> forall C e1' e2', plug C e1 e1'
-> plug C e2 e2'
-> step e1' e2'.
Proof.
invert 1; simplify; eauto.
Qed.
Lemma stepStar_plug : forall e1 e2,
step^* e1 e2
-> forall C e1' e2', plug C e1 e1'
-> plug C e2 e2'
-> step^* e1' e2'.
Proof.
induct 1; simplify.
assert (e1' = e2') by (eapply plug_functional; eassumption).
subst.
constructor.
assert (exists y', plug C y y') by eauto using plug_mirror.
invert H3.
eapply step_plug in H.
econstructor.
eassumption.
eapply IHtrc.
eassumption.
assumption.
eassumption.
assumption.
Qed.
Hint Resolve stepStar_plug eval_value.
Theorem eval_step : forall e v,
eval e v
-> step^* e v.
Proof.
induct 1; eauto.
eapply trc_trans.
eapply stepStar_plug with (e1 := e1) (e2 := Abs x e1') (C := App1 Hole e2); eauto.
eapply trc_trans.
eapply stepStar_plug with (e1 := e2) (e2 := v2) (C := App2 (Abs x e1') Hole); eauto.
eauto.
Qed.
End Ulc.
Module Stlc.
(* Expression syntax *)
Inductive exp : Set :=
| Var (x : var)
@ -519,3 +726,4 @@ Proof.
apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t); eauto.
apply invariant_induction; simplify; eauto; equality.
Qed.
End Stlc.