mirror of
https://github.com/achlipala/frap.git
synced 2025-03-16 01:51:45 +00:00
LambdaCalculusAndTypeSoundness: untyped lambda calculus semantics, two ways
This commit is contained in:
parent
9ce653261c
commit
55257f669d
1 changed files with 722 additions and 514 deletions
|
@ -5,22 +5,229 @@
|
|||
|
||||
Require Import Frap.
|
||||
|
||||
(* Expression syntax *)
|
||||
Inductive exp : Set :=
|
||||
| Var (x : var)
|
||||
| Const (n : nat)
|
||||
| Plus (e1 e2 : exp)
|
||||
| Abs (x : var) (e1 : exp)
|
||||
| App (e1 e2 : exp).
|
||||
Module Ulc.
|
||||
Inductive exp : Set :=
|
||||
| Var : var -> exp
|
||||
| Abs : var -> exp -> exp
|
||||
| App : exp -> exp -> exp.
|
||||
|
||||
(* Values (final results of evaluation) *)
|
||||
Inductive value : exp -> Prop :=
|
||||
| VConst : forall n, value (Const n)
|
||||
| VAbs : forall x e1, value (Abs x e1).
|
||||
Fixpoint subst (rep : exp) (x : string) (e : exp) : exp :=
|
||||
match e with
|
||||
| Var y => if string_dec y x then rep else Var y
|
||||
| Abs y e1 => Abs y (if string_dec y x then e1 else subst rep x e1)
|
||||
| App e1 e2 => App (subst rep x e1) (subst rep x e2)
|
||||
end.
|
||||
|
||||
(* Substitution (not applicable when [e1] isn't closed, to avoid some complexity
|
||||
|
||||
(** * Big-step semantics *)
|
||||
|
||||
(** This is the most straightforward way to give semantics to lambda terms:
|
||||
* We evaluate any closed term into a value (that is, an [Abs]). *)
|
||||
Inductive eval : exp -> exp -> Prop :=
|
||||
| BigAbs : forall x e,
|
||||
eval (Abs x e) (Abs x e)
|
||||
| BigApp : forall e1 x e1' e2 v2 v,
|
||||
eval e1 (Abs x e1')
|
||||
-> eval e2 v2
|
||||
-> eval (subst v2 x e1') v
|
||||
-> eval (App e1 e2) v.
|
||||
|
||||
(** Note that we omit a [Var] case, since variable terms can't be *closed*. *)
|
||||
|
||||
|
||||
(** Which terms are values, that is, final results of execution? *)
|
||||
Inductive value : exp -> Prop :=
|
||||
| Value : forall x e, value (Abs x e).
|
||||
(** We're cheating a bit here, *assuming* that the term is also closed. *)
|
||||
|
||||
Hint Constructors eval value.
|
||||
|
||||
(** Actually, let's prove that [eval] only produces values. *)
|
||||
Theorem eval_value : forall e v,
|
||||
eval e v
|
||||
-> value v.
|
||||
Proof.
|
||||
induct 1; eauto.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Small-step semantics with evaluation contexts *)
|
||||
|
||||
Inductive context : Set :=
|
||||
| Hole : context
|
||||
| App1 : context -> exp -> context
|
||||
| App2 : exp -> context -> context.
|
||||
|
||||
Inductive plug : context -> exp -> exp -> Prop :=
|
||||
| PlugHole : forall e,
|
||||
plug Hole e e
|
||||
| PlugApp1 : forall c e1 e2 e,
|
||||
plug c e1 e
|
||||
-> plug (App1 c e2) e1 (App e e2)
|
||||
| PlugApp2 : forall c e1 e2 e,
|
||||
value e1
|
||||
-> plug c e2 e
|
||||
-> plug (App2 e1 c) e2 (App e1 e).
|
||||
(* Subtle point: the [value] hypothesis right above enforces a well-formedness
|
||||
* condition on contexts that may actually be plugged. We don't allow
|
||||
* skipping over a lefthand subterm of an application when that term has
|
||||
* evaluation work left to do. This condition is the essence of
|
||||
* *call-by-value* instead of other evaluation strategies. Details are
|
||||
* largely beyond our scope here. *)
|
||||
|
||||
Inductive step : exp -> exp -> Prop :=
|
||||
| ContextBeta : forall c x e v e1 e2,
|
||||
value v
|
||||
-> plug c (App (Abs x e) v) e1
|
||||
-> plug c (subst v x e) e2
|
||||
-> step e1 e2.
|
||||
|
||||
Hint Constructors plug step.
|
||||
|
||||
(** We can move directly to establishing inclusion from basic small steps to contextual small steps. *)
|
||||
|
||||
Theorem value_eval : forall v,
|
||||
value v
|
||||
-> eval v v.
|
||||
Proof.
|
||||
invert 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve value_eval.
|
||||
|
||||
Lemma step_eval'' : forall v c x e e1 e2 v0,
|
||||
value v
|
||||
-> plug c (App (Abs x e) v) e1
|
||||
-> plug c (subst v x e) e2
|
||||
-> eval e2 v0
|
||||
-> eval e1 v0.
|
||||
Proof.
|
||||
induct c; invert 2; invert 1; simplify; eauto.
|
||||
invert H0; eauto.
|
||||
invert H0; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve step_eval''.
|
||||
|
||||
Lemma step_eval' : forall e1 e2,
|
||||
step e1 e2
|
||||
-> forall v, eval e2 v
|
||||
-> eval e1 v.
|
||||
Proof.
|
||||
invert 1; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve step_eval'.
|
||||
|
||||
Theorem step_eval : forall e v,
|
||||
step^* e v
|
||||
-> value v
|
||||
-> eval e v.
|
||||
Proof.
|
||||
induct 1; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma plug_functional : forall C e e1,
|
||||
plug C e e1
|
||||
-> forall e2, plug C e e2
|
||||
-> e1 = e2.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; try f_equal; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma plug_mirror : forall C e e', plug C e e'
|
||||
-> forall e1, exists e1', plug C e1 e1'.
|
||||
Proof.
|
||||
induct 1; simplify; eauto.
|
||||
|
||||
specialize (IHplug e0); first_order; eauto.
|
||||
|
||||
specialize (IHplug e0); first_order; eauto.
|
||||
Qed.
|
||||
|
||||
Fixpoint compose (C1 C2 : context) : context :=
|
||||
match C2 with
|
||||
| Hole => C1
|
||||
| App1 C2' e => App1 (compose C1 C2') e
|
||||
| App2 v C2' => App2 v (compose C1 C2')
|
||||
end.
|
||||
|
||||
Lemma compose_ok : forall C1 C2 e1 e2 e3,
|
||||
plug C1 e1 e2
|
||||
-> plug C2 e2 e3
|
||||
-> plug (compose C1 C2) e1 e3.
|
||||
Proof.
|
||||
induct 2; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve compose_ok.
|
||||
|
||||
Lemma step_plug : forall e1 e2,
|
||||
step e1 e2
|
||||
-> forall C e1' e2', plug C e1 e1'
|
||||
-> plug C e2 e2'
|
||||
-> step e1' e2'.
|
||||
Proof.
|
||||
invert 1; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma stepStar_plug : forall e1 e2,
|
||||
step^* e1 e2
|
||||
-> forall C e1' e2', plug C e1 e1'
|
||||
-> plug C e2 e2'
|
||||
-> step^* e1' e2'.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
assert (e1' = e2') by (eapply plug_functional; eassumption).
|
||||
subst.
|
||||
constructor.
|
||||
|
||||
assert (exists y', plug C y y') by eauto using plug_mirror.
|
||||
invert H3.
|
||||
eapply step_plug in H.
|
||||
econstructor.
|
||||
eassumption.
|
||||
eapply IHtrc.
|
||||
eassumption.
|
||||
assumption.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Hint Resolve stepStar_plug eval_value.
|
||||
|
||||
Theorem eval_step : forall e v,
|
||||
eval e v
|
||||
-> step^* e v.
|
||||
Proof.
|
||||
induct 1; eauto.
|
||||
|
||||
eapply trc_trans.
|
||||
eapply stepStar_plug with (e1 := e1) (e2 := Abs x e1') (C := App1 Hole e2); eauto.
|
||||
eapply trc_trans.
|
||||
eapply stepStar_plug with (e1 := e2) (e2 := v2) (C := App2 (Abs x e1') Hole); eauto.
|
||||
eauto.
|
||||
Qed.
|
||||
End Ulc.
|
||||
|
||||
Module Stlc.
|
||||
(* Expression syntax *)
|
||||
Inductive exp : Set :=
|
||||
| Var (x : var)
|
||||
| Const (n : nat)
|
||||
| Plus (e1 e2 : exp)
|
||||
| Abs (x : var) (e1 : exp)
|
||||
| App (e1 e2 : exp).
|
||||
|
||||
(* Values (final results of evaluation) *)
|
||||
Inductive value : exp -> Prop :=
|
||||
| VConst : forall n, value (Const n)
|
||||
| VAbs : forall x e1, value (Abs x e1).
|
||||
|
||||
(* Substitution (not applicable when [e1] isn't closed, to avoid some complexity
|
||||
* that we don't need) *)
|
||||
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
|
||||
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
|
||||
match e2 with
|
||||
| Var y => if y ==v x then e1 else Var y
|
||||
| Const n => Const n
|
||||
|
@ -29,94 +236,94 @@ Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
|
|||
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
|
||||
end.
|
||||
|
||||
(* Evaluation contexts *)
|
||||
Inductive context : Set :=
|
||||
| Hole : context
|
||||
| Plus1 : context -> exp -> context
|
||||
| Plus2 : exp -> context -> context
|
||||
| App1 : context -> exp -> context
|
||||
| App2 : exp -> context -> context.
|
||||
(* Evaluation contexts *)
|
||||
Inductive context : Set :=
|
||||
| Hole : context
|
||||
| Plus1 : context -> exp -> context
|
||||
| Plus2 : exp -> context -> context
|
||||
| App1 : context -> exp -> context
|
||||
| App2 : exp -> context -> context.
|
||||
|
||||
(* Plugging an expression into a context *)
|
||||
Inductive plug : context -> exp -> exp -> Prop :=
|
||||
| PlugHole : forall e, plug Hole e e
|
||||
| PlugPlus1 : forall e e' C e2,
|
||||
(* Plugging an expression into a context *)
|
||||
Inductive plug : context -> exp -> exp -> Prop :=
|
||||
| PlugHole : forall e, plug Hole e e
|
||||
| PlugPlus1 : forall e e' C e2,
|
||||
plug C e e'
|
||||
-> plug (Plus1 C e2) e (Plus e' e2)
|
||||
| PlugPlus2 : forall e e' v1 C,
|
||||
| PlugPlus2 : forall e e' v1 C,
|
||||
value v1
|
||||
-> plug C e e'
|
||||
-> plug (Plus2 v1 C) e (Plus v1 e')
|
||||
| PlugApp1 : forall e e' C e2,
|
||||
| PlugApp1 : forall e e' C e2,
|
||||
plug C e e'
|
||||
-> plug (App1 C e2) e (App e' e2)
|
||||
| PlugApp2 : forall e e' v1 C,
|
||||
| PlugApp2 : forall e e' v1 C,
|
||||
value v1
|
||||
-> plug C e e'
|
||||
-> plug (App2 v1 C) e (App v1 e').
|
||||
|
||||
(* Small-step, call-by-value evaluation, using our evaluation contexts *)
|
||||
(* Small-step, call-by-value evaluation, using our evaluation contexts *)
|
||||
|
||||
(* First: the primitive reductions *)
|
||||
Inductive step0 : exp -> exp -> Prop :=
|
||||
| Beta : forall x e v,
|
||||
(* First: the primitive reductions *)
|
||||
Inductive step0 : exp -> exp -> Prop :=
|
||||
| Beta : forall x e v,
|
||||
value v
|
||||
-> step0 (App (Abs x e) v) (subst v x e)
|
||||
| Add : forall n1 n2,
|
||||
| Add : forall n1 n2,
|
||||
step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)).
|
||||
|
||||
(* Then: running them in context *)
|
||||
Inductive step : exp -> exp -> Prop :=
|
||||
| StepRule : forall C e1 e2 e1' e2',
|
||||
(* Then: running them in context *)
|
||||
Inductive step : exp -> exp -> Prop :=
|
||||
| StepRule : forall C e1 e2 e1' e2',
|
||||
plug C e1 e1'
|
||||
-> plug C e2 e2'
|
||||
-> step0 e1 e2
|
||||
-> step e1' e2'.
|
||||
|
||||
(* It's easy to wrap everything as a transition system. *)
|
||||
Definition trsys_of (e : exp) := {|
|
||||
(* It's easy to wrap everything as a transition system. *)
|
||||
Definition trsys_of (e : exp) := {|
|
||||
Initial := {e};
|
||||
Step := step
|
||||
|}.
|
||||
|}.
|
||||
|
||||
|
||||
(* Syntax of types *)
|
||||
Inductive type : Set :=
|
||||
| Nat
|
||||
| Fun (dom ran : type).
|
||||
(* Syntax of types *)
|
||||
Inductive type : Set :=
|
||||
| Nat
|
||||
| Fun (dom ran : type).
|
||||
|
||||
(* Our typing judgment uses *typing contexts* (not to be confused with
|
||||
(* Our typing judgment uses *typing contexts* (not to be confused with
|
||||
* evaluation contexts) to map free variables to their types. *)
|
||||
Inductive hasty : fmap var type -> exp -> type -> Prop :=
|
||||
| HtVar : forall G x t,
|
||||
Inductive hasty : fmap var type -> exp -> type -> Prop :=
|
||||
| HtVar : forall G x t,
|
||||
G $? x = Some t
|
||||
-> hasty G (Var x) t
|
||||
| HtConst : forall G n,
|
||||
| HtConst : forall G n,
|
||||
hasty G (Const n) Nat
|
||||
| HtPlus : forall G e1 e2,
|
||||
| HtPlus : forall G e1 e2,
|
||||
hasty G e1 Nat
|
||||
-> hasty G e2 Nat
|
||||
-> hasty G (Plus e1 e2) Nat
|
||||
| HtAbs : forall G x e1 t1 t2,
|
||||
| HtAbs : forall G x e1 t1 t2,
|
||||
hasty (G $+ (x, t1)) e1 t2
|
||||
-> hasty G (Abs x e1) (Fun t1 t2)
|
||||
| HtApp : forall G e1 e2 t1 t2,
|
||||
| HtApp : forall G e1 e2 t1 t2,
|
||||
hasty G e1 (Fun t1 t2)
|
||||
-> hasty G e2 t1
|
||||
-> hasty G (App e1 e2) t2.
|
||||
|
||||
Hint Constructors value plug step0 step hasty.
|
||||
Hint Constructors value plug step0 step hasty.
|
||||
|
||||
|
||||
(** * Let's prove type soundness first without much automation. *)
|
||||
(** * Let's prove type soundness first without much automation. *)
|
||||
|
||||
(* Now we're ready for the first of the two key properties, to show that "has
|
||||
(* Now we're ready for the first of the two key properties, to show that "has
|
||||
* type t in the empty typing context" is an invariant. *)
|
||||
Lemma progress : forall e t,
|
||||
Lemma progress : forall e t,
|
||||
hasty $0 e t
|
||||
-> value e
|
||||
\/ (exists e' : exp, step e e').
|
||||
Proof.
|
||||
Proof.
|
||||
induct 1; simplify; try equality.
|
||||
|
||||
left.
|
||||
|
@ -200,25 +407,25 @@ Proof.
|
|||
eauto.
|
||||
eauto.
|
||||
assumption.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
(* Inclusion between typing contexts is preserved by adding the same new mapping
|
||||
(* Inclusion between typing contexts is preserved by adding the same new mapping
|
||||
* to both. *)
|
||||
Lemma weakening_override : forall (G G' : fmap var type) x t,
|
||||
Lemma weakening_override : forall (G G' : fmap var type) x t,
|
||||
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
|
||||
-> (forall x' t', G $+ (x, t) $? x' = Some t'
|
||||
-> G' $+ (x, t) $? x' = Some t').
|
||||
Proof.
|
||||
Proof.
|
||||
simplify.
|
||||
cases (x ==v x'); simplify; eauto.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
(** Raising a typing derivation to a larger typing context *)
|
||||
Lemma weakening : forall G e t,
|
||||
(** Raising a typing derivation to a larger typing context *)
|
||||
Lemma weakening : forall G e t,
|
||||
hasty G e t
|
||||
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
|
||||
-> hasty G' e t.
|
||||
Proof.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
constructor.
|
||||
|
@ -243,14 +450,14 @@ Proof.
|
|||
assumption.
|
||||
apply IHhasty2.
|
||||
assumption.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
(* Replacing a variable with a properly typed term preserves typing. *)
|
||||
Lemma substitution : forall G x t' e t e',
|
||||
(* Replacing a variable with a properly typed term preserves typing. *)
|
||||
Lemma substitution : forall G x t' e t e',
|
||||
hasty (G $+ (x, t')) e t
|
||||
-> hasty $0 e' t'
|
||||
-> hasty G (subst e' x e) t.
|
||||
Proof.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
cases (x0 ==v x).
|
||||
|
@ -298,15 +505,15 @@ Proof.
|
|||
assumption.
|
||||
apply IHhasty2.
|
||||
assumption.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
(* We're almost ready for the main preservation property. Let's prove it first
|
||||
(* We're almost ready for the main preservation property. Let's prove it first
|
||||
* for the more basic [step0] relation. *)
|
||||
Lemma preservation0 : forall e1 e2,
|
||||
Lemma preservation0 : forall e1 e2,
|
||||
step0 e1 e2
|
||||
-> forall t, hasty $0 e1 t
|
||||
-> hasty $0 e2 t.
|
||||
Proof.
|
||||
Proof.
|
||||
invert 1; simplify.
|
||||
|
||||
invert H.
|
||||
|
@ -317,17 +524,17 @@ Proof.
|
|||
|
||||
invert H.
|
||||
constructor.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
(* We also need this key property, essentially saying that, if [e1] and [e2] are
|
||||
(* We also need this key property, essentially saying that, if [e1] and [e2] are
|
||||
* "type-equivalent," then they remain "type-equivalent" after wrapping the same
|
||||
* context around both. *)
|
||||
Lemma generalize_plug : forall e1 C e1',
|
||||
Lemma generalize_plug : forall e1 C e1',
|
||||
plug C e1 e1'
|
||||
-> forall e2 e2', plug C e2 e2'
|
||||
-> (forall t, hasty $0 e1 t -> hasty $0 e2 t)
|
||||
-> (forall t, hasty $0 e1' t -> hasty $0 e2' t).
|
||||
Proof.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
invert H.
|
||||
|
@ -369,14 +576,14 @@ Proof.
|
|||
eassumption.
|
||||
assumption.
|
||||
eassumption.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
(* OK, now we're almost done. *)
|
||||
Lemma preservation : forall e1 e2,
|
||||
(* OK, now we're almost done. *)
|
||||
Lemma preservation : forall e1 e2,
|
||||
step e1 e2
|
||||
-> forall t, hasty $0 e1 t
|
||||
-> hasty $0 e2 t.
|
||||
Proof.
|
||||
Proof.
|
||||
invert 1; simplify.
|
||||
|
||||
eapply generalize_plug with (e1' := e1).
|
||||
|
@ -387,17 +594,17 @@ Proof.
|
|||
eassumption.
|
||||
assumption.
|
||||
assumption.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
(* Now watch this! Though the syntactic approach to type soundness is usually
|
||||
(* Now watch this! Though the syntactic approach to type soundness is usually
|
||||
* presented from scratch as a proof technique, it turns out that the two key
|
||||
* properties, progress and preservation, are just instances of the same methods
|
||||
* we've been applying all along with invariants of transition systems! *)
|
||||
Theorem safety : forall e t, hasty $0 e t
|
||||
Theorem safety : forall e t, hasty $0 e t
|
||||
-> invariantFor (trsys_of e)
|
||||
(fun e' => value e'
|
||||
\/ exists e'', step e' e'').
|
||||
Proof.
|
||||
Proof.
|
||||
simplify.
|
||||
|
||||
(* Step 1: strengthen the invariant. In particular, the typing relation is
|
||||
|
@ -417,12 +624,12 @@ Proof.
|
|||
simplify.
|
||||
eapply progress.
|
||||
eassumption.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Let's do that again with more automation. *)
|
||||
(** * Let's do that again with more automation. *)
|
||||
|
||||
Ltac t0 := match goal with
|
||||
Ltac t0 := match goal with
|
||||
| [ H : ex _ |- _ ] => destruct H
|
||||
| [ H : _ /\ _ |- _ ] => destruct H
|
||||
| [ |- context[?x ==v ?y] ] => destruct (x ==v y)
|
||||
|
@ -435,87 +642,88 @@ Ltac t0 := match goal with
|
|||
| [ H : plug _ _ _ |- _ ] => invert1 H
|
||||
end; subst.
|
||||
|
||||
Ltac t := simplify; propositional; repeat (t0; simplify); try congruence; eauto 6.
|
||||
Ltac t := simplify; propositional; repeat (t0; simplify); try congruence; eauto 6.
|
||||
|
||||
Lemma progress_snazzy : forall e t,
|
||||
Lemma progress_snazzy : forall e t,
|
||||
hasty $0 e t
|
||||
-> value e
|
||||
\/ (exists e' : exp, step e e').
|
||||
Proof.
|
||||
Proof.
|
||||
induct 1; t.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
Hint Resolve weakening_override.
|
||||
Hint Resolve weakening_override.
|
||||
|
||||
Lemma weakening_snazzy : forall G e t,
|
||||
Lemma weakening_snazzy : forall G e t,
|
||||
hasty G e t
|
||||
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
|
||||
-> hasty G' e t.
|
||||
Proof.
|
||||
Proof.
|
||||
induct 1; t.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
Hint Resolve weakening_snazzy.
|
||||
Hint Resolve weakening_snazzy.
|
||||
|
||||
(* Replacing a typing context with an equal one has no effect (useful to guide
|
||||
(* Replacing a typing context with an equal one has no effect (useful to guide
|
||||
* proof search). *)
|
||||
Lemma hasty_change : forall G e t,
|
||||
Lemma hasty_change : forall G e t,
|
||||
hasty G e t
|
||||
-> forall G', G' = G
|
||||
-> hasty G' e t.
|
||||
Proof.
|
||||
Proof.
|
||||
t.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
Hint Resolve hasty_change.
|
||||
Hint Resolve hasty_change.
|
||||
|
||||
Lemma substitution_snazzy : forall G x t' e t e',
|
||||
Lemma substitution_snazzy : forall G x t' e t e',
|
||||
hasty (G $+ (x, t')) e t
|
||||
-> hasty $0 e' t'
|
||||
-> hasty G (subst e' x e) t.
|
||||
Proof.
|
||||
Proof.
|
||||
induct 1; t.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
Hint Resolve substitution_snazzy.
|
||||
Hint Resolve substitution_snazzy.
|
||||
|
||||
Lemma preservation0_snazzy : forall e1 e2,
|
||||
Lemma preservation0_snazzy : forall e1 e2,
|
||||
step0 e1 e2
|
||||
-> forall t, hasty $0 e1 t
|
||||
-> hasty $0 e2 t.
|
||||
Proof.
|
||||
Proof.
|
||||
invert 1; t.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
Hint Resolve preservation0_snazzy.
|
||||
Hint Resolve preservation0_snazzy.
|
||||
|
||||
Lemma generalize_plug_snazzy : forall e1 C e1',
|
||||
Lemma generalize_plug_snazzy : forall e1 C e1',
|
||||
plug C e1 e1'
|
||||
-> forall e2 e2', plug C e2 e2'
|
||||
-> (forall t, hasty $0 e1 t -> hasty $0 e2 t)
|
||||
-> (forall t, hasty $0 e1' t -> hasty $0 e2' t).
|
||||
Proof.
|
||||
Proof.
|
||||
induct 1; t.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
Hint Resolve generalize_plug_snazzy.
|
||||
Hint Resolve generalize_plug_snazzy.
|
||||
|
||||
Lemma preservation_snazzy : forall e1 e2,
|
||||
Lemma preservation_snazzy : forall e1 e2,
|
||||
step e1 e2
|
||||
-> forall t, hasty $0 e1 t
|
||||
-> hasty $0 e2 t.
|
||||
Proof.
|
||||
Proof.
|
||||
invert 1; t.
|
||||
Qed.
|
||||
Qed.
|
||||
|
||||
Hint Resolve progress_snazzy preservation_snazzy.
|
||||
Hint Resolve progress_snazzy preservation_snazzy.
|
||||
|
||||
Theorem safety_snazzy : forall e t, hasty $0 e t
|
||||
Theorem safety_snazzy : forall e t, hasty $0 e t
|
||||
-> invariantFor (trsys_of e)
|
||||
(fun e' => value e'
|
||||
\/ exists e'', step e' e'').
|
||||
Proof.
|
||||
Proof.
|
||||
simplify.
|
||||
apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t); eauto.
|
||||
apply invariant_induction; simplify; eauto; equality.
|
||||
Qed.
|
||||
Qed.
|
||||
End Stlc.
|
||||
|
|
Loading…
Add table
Reference in a new issue