mirror of
https://github.com/achlipala/frap.git
synced 2024-12-01 00:26:18 +00:00
Typo fix (issue #14)
This commit is contained in:
parent
ee4aec520b
commit
84791f343f
1 changed files with 1 additions and 1 deletions
|
@ -2779,7 +2779,7 @@ These rules together are \emph{complete}\index{completeness of Hoare logic}, in
|
||||||
Here we only go into detail on a proof of the dual property, \emph{soundness}\index{soundness of Hoare logic}.
|
Here we only go into detail on a proof of the dual property, \emph{soundness}\index{soundness of Hoare logic}.
|
||||||
|
|
||||||
\begin{lemma}\label{hoare_while}
|
\begin{lemma}\label{hoare_while}
|
||||||
Assume the following fact: Together, $\bigstep{(h, v, c)}{(h', v')}$, $I(h, v)$, and $\denote{b}(h, s)$ imply $I(h', v')$.
|
Assume the following fact: Together, $\bigstep{(h, v, c)}{(h', v')}$, $I(h, v)$, and $\denote{b}(h, v)$ imply $I(h', v')$.
|
||||||
Then, given $\bigstep{(h, v, \{I\} \while{b}{c})}{(h', v')}$, it follows that $I(h', v')$ and $\neg \denote{b}(h', v')$.
|
Then, given $\bigstep{(h, v, \{I\} \while{b}{c})}{(h', v')}$, it follows that $I(h', v')$ and $\neg \denote{b}(h', v')$.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
Loading…
Reference in a new issue