EvaluationContexts: determinism

This commit is contained in:
Adam Chlipala 2021-03-27 20:26:37 -04:00
parent bcbb2181be
commit 8d1cecf7f7

View file

@ -6,6 +6,11 @@
Require Import Frap. Require Import Frap.
(** * Evaluation Contexts for Lambda Calculus *)
(* Let's revisit the typed language from the end of the previous chapter, this
* time casting its small-step semantics using evaluation contexts. *)
Module Stlc. Module Stlc.
Inductive exp : Set := Inductive exp : Set :=
| Var (x : var) | Var (x : var)
@ -27,6 +32,10 @@ Module Stlc.
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'') | App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
end. end.
(* Here's the first difference from last chapter. This is our grammar of
* contexts. Note a difference from the book: we don't enforce here that
* the first argument of a [Plus1] or [App1] is a value, but rather that
* constraint comes in the next relation definition. *)
Inductive context : Set := Inductive context : Set :=
| Hole : context | Hole : context
| Plus1 : context -> exp -> context | Plus1 : context -> exp -> context
@ -34,6 +43,7 @@ Module Stlc.
| App1 : context -> exp -> context | App1 : context -> exp -> context
| App2 : exp -> context -> context. | App2 : exp -> context -> context.
(* Again, note how two of the rules include [value] premises. *)
Inductive plug : context -> exp -> exp -> Prop := Inductive plug : context -> exp -> exp -> Prop :=
| PlugHole : forall e, plug Hole e e | PlugHole : forall e, plug Hole e e
| PlugPlus1 : forall e e' C e2, | PlugPlus1 : forall e e' C e2,
@ -217,4 +227,70 @@ Module Stlc.
apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t); eauto. apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t); eauto.
apply invariant_induction; simplify; eauto; equality. apply invariant_induction; simplify; eauto; equality.
Qed. Qed.
(* It may not be obvious that this way of defining the semantics gives us a
* unique evaluation sequence for every well-typed program. Let's prove
* it. *)
Lemma plug_not_value : forall C e v,
value v
-> plug C e v
-> C = Hole /\ e = v.
Proof.
invert 1; invert 1; auto.
Qed.
Lemma step0_value : forall v e,
value v
-> step0 v e
-> False.
Proof.
invert 1; invert 1.
Qed.
Lemma plug_det : forall C e1 e2 e1' f1 f1',
step0 e1 e1'
-> step0 f1 f1'
-> plug C e1 e2
-> forall C', plug C' f1 e2
-> C = C' /\ e1 = f1.
Proof.
induct 3; invert 1;
repeat match goal with
| [ H : step0 _ _ |- _ ] => invert1 H
| [ H : plug _ _ _ |- _ ] => eapply plug_not_value in H; [ | solve [ eauto ] ];
propositional; subst
| [ IH : step0 _ _ -> _, H : plug _ _ _ |- _ ] => eapply IH in H; [ | solve [ auto ] ];
equality
| [ _ : value ?v, _ : step0 ?v _ |- _ ] => exfalso; eapply step0_value; eauto
end; equality.
Qed.
Lemma step0_det : forall e e', step0 e e'
-> forall e'', step0 e e''
-> e' = e''.
Proof.
invert 1; invert 1; auto.
Qed.
Lemma plug_func : forall C e e1,
plug C e e1
-> forall e2, plug C e e2
-> e1 = e2.
Proof.
induct 1; invert 1; auto; f_equal; auto.
Qed.
Theorem deterministic : forall e e', step e e'
-> forall e'', step e e''
-> e' = e''.
Proof.
invert 1; invert 1.
assert (C = C0 /\ e1 = e0) by (eapply plug_det; eassumption).
propositional; subst.
assert (e2 = e3) by (eapply step0_det; eassumption).
subst.
eapply plug_func; eassumption.
Qed.
End Stlc. End Stlc.