mirror of
https://github.com/achlipala/frap.git
synced 2025-01-09 17:44:15 +00:00
EvaluationContexts: determinism
This commit is contained in:
parent
bcbb2181be
commit
8d1cecf7f7
1 changed files with 76 additions and 0 deletions
|
@ -6,6 +6,11 @@
|
|||
Require Import Frap.
|
||||
|
||||
|
||||
(** * Evaluation Contexts for Lambda Calculus *)
|
||||
|
||||
(* Let's revisit the typed language from the end of the previous chapter, this
|
||||
* time casting its small-step semantics using evaluation contexts. *)
|
||||
|
||||
Module Stlc.
|
||||
Inductive exp : Set :=
|
||||
| Var (x : var)
|
||||
|
@ -27,6 +32,10 @@ Module Stlc.
|
|||
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
|
||||
end.
|
||||
|
||||
(* Here's the first difference from last chapter. This is our grammar of
|
||||
* contexts. Note a difference from the book: we don't enforce here that
|
||||
* the first argument of a [Plus1] or [App1] is a value, but rather that
|
||||
* constraint comes in the next relation definition. *)
|
||||
Inductive context : Set :=
|
||||
| Hole : context
|
||||
| Plus1 : context -> exp -> context
|
||||
|
@ -34,6 +43,7 @@ Module Stlc.
|
|||
| App1 : context -> exp -> context
|
||||
| App2 : exp -> context -> context.
|
||||
|
||||
(* Again, note how two of the rules include [value] premises. *)
|
||||
Inductive plug : context -> exp -> exp -> Prop :=
|
||||
| PlugHole : forall e, plug Hole e e
|
||||
| PlugPlus1 : forall e e' C e2,
|
||||
|
@ -217,4 +227,70 @@ Module Stlc.
|
|||
apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t); eauto.
|
||||
apply invariant_induction; simplify; eauto; equality.
|
||||
Qed.
|
||||
|
||||
(* It may not be obvious that this way of defining the semantics gives us a
|
||||
* unique evaluation sequence for every well-typed program. Let's prove
|
||||
* it. *)
|
||||
|
||||
Lemma plug_not_value : forall C e v,
|
||||
value v
|
||||
-> plug C e v
|
||||
-> C = Hole /\ e = v.
|
||||
Proof.
|
||||
invert 1; invert 1; auto.
|
||||
Qed.
|
||||
|
||||
Lemma step0_value : forall v e,
|
||||
value v
|
||||
-> step0 v e
|
||||
-> False.
|
||||
Proof.
|
||||
invert 1; invert 1.
|
||||
Qed.
|
||||
|
||||
Lemma plug_det : forall C e1 e2 e1' f1 f1',
|
||||
step0 e1 e1'
|
||||
-> step0 f1 f1'
|
||||
-> plug C e1 e2
|
||||
-> forall C', plug C' f1 e2
|
||||
-> C = C' /\ e1 = f1.
|
||||
Proof.
|
||||
induct 3; invert 1;
|
||||
repeat match goal with
|
||||
| [ H : step0 _ _ |- _ ] => invert1 H
|
||||
| [ H : plug _ _ _ |- _ ] => eapply plug_not_value in H; [ | solve [ eauto ] ];
|
||||
propositional; subst
|
||||
| [ IH : step0 _ _ -> _, H : plug _ _ _ |- _ ] => eapply IH in H; [ | solve [ auto ] ];
|
||||
equality
|
||||
| [ _ : value ?v, _ : step0 ?v _ |- _ ] => exfalso; eapply step0_value; eauto
|
||||
end; equality.
|
||||
Qed.
|
||||
|
||||
Lemma step0_det : forall e e', step0 e e'
|
||||
-> forall e'', step0 e e''
|
||||
-> e' = e''.
|
||||
Proof.
|
||||
invert 1; invert 1; auto.
|
||||
Qed.
|
||||
|
||||
Lemma plug_func : forall C e e1,
|
||||
plug C e e1
|
||||
-> forall e2, plug C e e2
|
||||
-> e1 = e2.
|
||||
Proof.
|
||||
induct 1; invert 1; auto; f_equal; auto.
|
||||
Qed.
|
||||
|
||||
Theorem deterministic : forall e e', step e e'
|
||||
-> forall e'', step e e''
|
||||
-> e' = e''.
|
||||
Proof.
|
||||
invert 1; invert 1.
|
||||
|
||||
assert (C = C0 /\ e1 = e0) by (eapply plug_det; eassumption).
|
||||
propositional; subst.
|
||||
assert (e2 = e3) by (eapply step0_det; eassumption).
|
||||
subst.
|
||||
eapply plug_func; eassumption.
|
||||
Qed.
|
||||
End Stlc.
|
||||
|
|
Loading…
Reference in a new issue