mirror of
https://github.com/achlipala/frap.git
synced 2025-01-08 09:04:14 +00:00
ConcurrentSeparationLogic: a producer-consumer example (after tweaking SepCancel)
This commit is contained in:
parent
c335550a77
commit
a242a93a7e
4 changed files with 261 additions and 19 deletions
|
@ -81,7 +81,8 @@ Inductive step : forall A, heap * locks * cmd A -> heap * locks * cmd A -> Prop
|
|||
h $? a = Some v
|
||||
-> step (h, l, Write a v') (h $+ (a, v'), l, Return tt)
|
||||
| StepAlloc : forall h l numWords a,
|
||||
(forall i, i < numWords -> h $? (a + i) = None)
|
||||
a <> 0
|
||||
-> (forall i, i < numWords -> h $? (a + i) = None)
|
||||
-> step (h, l, Alloc numWords) (initialize h a numWords, l, Return a)
|
||||
| StepFree : forall h l a numWords,
|
||||
step (h, l, Free a numWords) (deallocate h a numWords, l, Return tt)
|
||||
|
@ -182,8 +183,8 @@ Module Import S <: SEP.
|
|||
Qed.
|
||||
|
||||
Theorem lift_right : forall p q (R : Prop),
|
||||
R
|
||||
-> p ===> q
|
||||
p ===> q
|
||||
-> R
|
||||
-> p ===> q * [| R |].
|
||||
Proof.
|
||||
t.
|
||||
|
@ -306,7 +307,7 @@ Inductive hoare_triple (linvs : list hprop) : forall {result}, hprop -> cmd resu
|
|||
| HtWrite : forall a v',
|
||||
hoare_triple linvs (exists v, a |-> v)%sep (Write a v') (fun _ => a |-> v')%sep
|
||||
| HtAlloc : forall numWords,
|
||||
hoare_triple linvs emp%sep (Alloc numWords) (fun r => r |--> zeroes numWords)%sep
|
||||
hoare_triple linvs emp%sep (Alloc numWords) (fun r => r |--> zeroes numWords * [| r <> 0 |])%sep
|
||||
| HtFree : forall a numWords,
|
||||
hoare_triple linvs (a |->? numWords)%sep (Free a numWords) (fun _ => emp)%sep
|
||||
|
||||
|
@ -418,7 +419,6 @@ Qed.
|
|||
Ltac basic := apply HtReturn' || eapply HtWrite || eapply HtAlloc || eapply HtFree
|
||||
|| (eapply HtLock; simplify; solve [ eauto ])
|
||||
|| (eapply HtUnlock; simplify; solve [ eauto ]).
|
||||
|
||||
Ltac step0 := basic || eapply HtBind || (eapply use_lemma; [ basic | cancel; auto ])
|
||||
|| (eapply use_lemma; [ eapply HtRead' | solve [ cancel; auto ] ])
|
||||
|| (eapply HtRead''; solve [ cancel ])
|
||||
|
@ -438,13 +438,51 @@ Ltac use H := (eapply use_lemma; [ eapply H | cancel; auto ])
|
|||
|
||||
Ltac heq := intros; apply himp_heq; split.
|
||||
|
||||
(* Fancy theorem to help us rewrite within preconditions and postconditions *)
|
||||
Instance hoare_triple_morphism : forall linvs A,
|
||||
Proper (heq ==> eq ==> (eq ==> heq) ==> iff) (@hoare_triple linvs A).
|
||||
Proof.
|
||||
Transparent himp.
|
||||
repeat (hnf; intros).
|
||||
unfold pointwise_relation in *; intuition subst.
|
||||
|
||||
eapply HtConsequence; eauto.
|
||||
rewrite H; reflexivity.
|
||||
intros.
|
||||
hnf in H1.
|
||||
specialize (H1 r _ eq_refl).
|
||||
rewrite H1; reflexivity.
|
||||
|
||||
eapply HtConsequence; eauto.
|
||||
rewrite H; reflexivity.
|
||||
intros.
|
||||
hnf in H1.
|
||||
specialize (H1 r _ eq_refl).
|
||||
rewrite H1; reflexivity.
|
||||
Opaque himp.
|
||||
Qed.
|
||||
|
||||
Theorem try_ptsto_first : forall a v, try_me_first (ptsto a v).
|
||||
Proof.
|
||||
simplify.
|
||||
apply try_me_first_easy.
|
||||
Qed.
|
||||
|
||||
Hint Resolve try_ptsto_first.
|
||||
|
||||
|
||||
(** ** The nonzero shared counter *)
|
||||
|
||||
Example incrementer :=
|
||||
for i := tt loop
|
||||
_ <- Lock 0;
|
||||
n <- Read 0;
|
||||
_ <- Write 0 (n + 1);
|
||||
_ <- Unlock 0;
|
||||
Return (Again tt)
|
||||
if n ==n 0 then
|
||||
Fail
|
||||
else
|
||||
Return (Again tt)
|
||||
done.
|
||||
|
||||
Definition incrementer_inv :=
|
||||
|
@ -454,12 +492,210 @@ Theorem incrementers_ok :
|
|||
[incrementer_inv] ||- {{emp}} (incrementer || incrementer) {{_ ~> emp}}.
|
||||
Proof.
|
||||
unfold incrementer, incrementer_inv.
|
||||
simp.
|
||||
fork (emp%sep) (emp%sep).
|
||||
loop_inv (fun _ : loop_outcome unit => emp%sep).
|
||||
loop_inv0 (fun _ : loop_outcome unit => emp%sep).
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
cases (r0 ==n 0).
|
||||
step.
|
||||
cancel.
|
||||
linear_arithmetic.
|
||||
cancel.
|
||||
step.
|
||||
cancel.
|
||||
cancel.
|
||||
loop_inv (fun _ : loop_outcome unit => emp%sep).
|
||||
loop_inv0 (fun _ : loop_outcome unit => emp%sep).
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
cases (r0 ==n 0).
|
||||
step.
|
||||
cancel.
|
||||
linear_arithmetic.
|
||||
cancel.
|
||||
step.
|
||||
cancel.
|
||||
cancel.
|
||||
cancel.
|
||||
cancel.
|
||||
Qed.
|
||||
|
||||
|
||||
(** ** Producer-consumer with a linked list *)
|
||||
|
||||
Fixpoint linkedList (p : nat) (ls : list nat) :=
|
||||
match ls with
|
||||
| nil => [| p = 0 |]
|
||||
| x :: ls' => [| p <> 0 |]
|
||||
* exists p', p |--> [x; p'] * linkedList p' ls'
|
||||
end%sep.
|
||||
|
||||
Theorem linkedList_null : forall ls,
|
||||
linkedList 0 ls === [| ls = nil |].
|
||||
Proof.
|
||||
heq; cases ls; cancel.
|
||||
Qed.
|
||||
|
||||
Theorem linkedList_nonnull : forall p ls,
|
||||
p <> 0
|
||||
-> linkedList p ls === exists x ls' p', [| ls = x :: ls' |] * p |--> [x; p'] * linkedList p' ls'.
|
||||
Proof.
|
||||
heq; cases ls; cancel; match goal with
|
||||
| [ H : _ = _ :: _ |- _ ] => invert H
|
||||
end; cancel.
|
||||
Qed.
|
||||
|
||||
Example producer :=
|
||||
_ <- for i := 0 loop
|
||||
cell <- Alloc 2;
|
||||
_ <- Write cell i;
|
||||
_ <- Lock 0;
|
||||
head <- Read 0;
|
||||
_ <- Write (cell+1) head;
|
||||
_ <- Write 0 cell;
|
||||
_ <- Unlock 0;
|
||||
Return (Again (2 + i))
|
||||
done;
|
||||
Return tt.
|
||||
|
||||
Fixpoint isEven (n : nat) : bool :=
|
||||
match n with
|
||||
| O => true
|
||||
| S (S n) => isEven n
|
||||
| _ => false
|
||||
end.
|
||||
|
||||
Example consumer :=
|
||||
for i := tt loop
|
||||
_ <- Lock 0;
|
||||
head <- Read 0;
|
||||
if head ==n 0 then
|
||||
_ <- Unlock 0;
|
||||
Return (Again tt)
|
||||
else
|
||||
tail <- Read (head+1);
|
||||
_ <- Write 0 tail;
|
||||
_ <- Unlock 0;
|
||||
data <- Read head;
|
||||
_ <- Free head 2;
|
||||
if isEven data then
|
||||
Return (Again tt)
|
||||
else
|
||||
Fail
|
||||
done.
|
||||
|
||||
Definition producer_consumer_inv :=
|
||||
(exists ls p, 0 |-> p * linkedList p ls * [| forallb isEven ls = true |])%sep.
|
||||
|
||||
Definition valueOf {A} (o : loop_outcome A) :=
|
||||
match o with
|
||||
| Done v => v
|
||||
| Again v => v
|
||||
end.
|
||||
|
||||
Theorem producer_consumer_ok :
|
||||
[producer_consumer_inv] ||- {{emp}} producer || consumer {{_ ~> emp}}.
|
||||
Proof.
|
||||
unfold producer_consumer_inv, producer, consumer.
|
||||
fork (emp%sep) (emp%sep).
|
||||
|
||||
step.
|
||||
loop_inv0 (fun o => [| isEven (valueOf o) = true |]%sep).
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
erewrite (linkedList_nonnull _ H0).
|
||||
cancel.
|
||||
simp.
|
||||
rewrite H1, H4.
|
||||
simp.
|
||||
simp.
|
||||
step.
|
||||
cancel.
|
||||
cancel.
|
||||
cancel.
|
||||
step.
|
||||
cancel.
|
||||
|
||||
loop_inv0 (fun _ : loop_outcome unit => emp%sep).
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
cases (r0 ==n 0).
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
cancel.
|
||||
setoid_rewrite (linkedList_nonnull _ n).
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
apply andb_true_iff in H.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
step.
|
||||
step.
|
||||
simp.
|
||||
cases (isEven r4).
|
||||
step.
|
||||
cancel.
|
||||
step.
|
||||
cancel.
|
||||
simp.
|
||||
rewrite Heq in H2.
|
||||
simp.
|
||||
equality.
|
||||
cancel.
|
||||
cancel.
|
||||
cancel.
|
||||
|
@ -509,6 +745,8 @@ Proof.
|
|||
eapply HtFrame; eauto.
|
||||
Qed.
|
||||
|
||||
Transparent heq himp lift star exis ptsto.
|
||||
|
||||
Lemma invert_Loop : forall linvs {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) P Q,
|
||||
hoare_triple linvs P (Loop init body) Q
|
||||
-> exists I, (forall acc, hoare_triple linvs (I (Again acc)) (body acc) I)
|
||||
|
@ -602,7 +840,7 @@ Qed.
|
|||
|
||||
Lemma invert_Alloc : forall linvs numWords P Q,
|
||||
hoare_triple linvs P (Alloc numWords) Q
|
||||
-> forall r, P * r |--> zeroes numWords ===> Q r.
|
||||
-> forall r, P * r |--> zeroes numWords * [| r <> 0 |] ===> Q r.
|
||||
Proof.
|
||||
induct 1; simp; eauto.
|
||||
|
||||
|
@ -1108,7 +1346,7 @@ Proof.
|
|||
eapply use_himp; try apply H5.
|
||||
cancel.
|
||||
|
||||
apply invert_Alloc with (r := a) in H0.
|
||||
apply invert_Alloc with (r := a) in H1.
|
||||
eexists; propositional.
|
||||
apply HtReturn'.
|
||||
eassumption.
|
||||
|
|
|
@ -31,8 +31,8 @@ Module Type SEP.
|
|||
(Q -> p ===> r)
|
||||
-> p * [| Q |] ===> r.
|
||||
Axiom lift_right : forall p q (R : Prop),
|
||||
R
|
||||
-> p ===> q
|
||||
p ===> q
|
||||
-> R
|
||||
-> p ===> q * [| R |].
|
||||
Axiom extra_lift : forall (P : Prop) p,
|
||||
P
|
||||
|
@ -138,8 +138,8 @@ Module Make(Import S : SEP).
|
|||
apply lift_left; intro.
|
||||
rewrite extra_lift with (P := True) (p := [| P /\ Q |]); auto.
|
||||
apply lift_right.
|
||||
tauto.
|
||||
reflexivity.
|
||||
tauto.
|
||||
Qed.
|
||||
|
||||
Lemma star_combine_lift2 : forall P Q, [| P /\ Q |] ===> [| P |] * [| Q |].
|
||||
|
@ -472,5 +472,5 @@ Module Make(Import S : SEP).
|
|||
basic_cancel
|
||||
end)
|
||||
| [ |- _ ===> _ ] => intuition (try congruence)
|
||||
end; intuition (try eassumption).
|
||||
end; intuition idtac.
|
||||
End Make.
|
||||
|
|
|
@ -174,8 +174,8 @@ Module Import S <: SEP.
|
|||
Qed.
|
||||
|
||||
Theorem lift_right : forall p q (R : Prop),
|
||||
R
|
||||
-> p ===> q
|
||||
p ===> q
|
||||
-> R
|
||||
-> p ===> q * [| R |].
|
||||
Proof.
|
||||
t.
|
||||
|
@ -1341,6 +1341,7 @@ Proof.
|
|||
step.
|
||||
setoid_rewrite linkedList_null.
|
||||
cancel.
|
||||
simp.
|
||||
step.
|
||||
setoid_rewrite (linkedList_nonnull _ n).
|
||||
step.
|
||||
|
@ -1352,6 +1353,8 @@ Proof.
|
|||
setoid_rewrite <- linkedListSegment_append.
|
||||
cancel.
|
||||
auto.
|
||||
simp.
|
||||
simp.
|
||||
rewrite linkedListSegment_empty.
|
||||
cancel.
|
||||
simp.
|
||||
|
@ -1362,4 +1365,5 @@ Proof.
|
|||
rewrite linkedListSegment_null.
|
||||
rewrite linkedList_null.
|
||||
cancel.
|
||||
simp.
|
||||
Qed.
|
||||
|
|
|
@ -158,8 +158,8 @@ Module Import S <: SEP.
|
|||
Qed.
|
||||
|
||||
Theorem lift_right : forall p q (R : Prop),
|
||||
R
|
||||
-> p ===> q
|
||||
p ===> q
|
||||
-> R
|
||||
-> p ===> q * [| R |].
|
||||
Proof.
|
||||
t.
|
||||
|
|
Loading…
Reference in a new issue